
Timing Anomalies in Dynamically Scheduled Microprocessors

To appear in Proc. of the 20th IEEE Real-Time Systems Symposium, December 1999

Thomas Lundqvist Per Stenström

Department of Computer Engineering
Chalmers University of Technology

SE-412 96 G̈oteborg, Sweden

Abstract

Previous timing analysis methods have assumed that
the worst-case instruction execution time necessarily cor-
responds to the worst-case behavior. We show that this
assumption is wrong in dynamically scheduled processors.
A cache miss, for example, can in some cases result in a
shorter execution time than a cache hit. Many examples of
such timing anomalies are provided.

We first provide necessary conditions when timing
anomalies can show up and identify what architectural fea-
tures that may cause such anomalies. We also show that an-
alyzing the effect of these anomalies with known techniques
results in prohibitive computational complexities. Instead,
we propose some simple code modification techniques to
make it impossible for any anomalies to occur. These modi-
fications make it possible to estimate WCET by known tech-
niques. Our evaluation shows that the pessimism imposed
by these techniques is fairly limited; it is less than 27 % for
the programs in our benchmark suite.

1. Introduction

Estimation of an upper bound on the execution time,
called worst-case execution time (WCET), is important
for highly dependable real-time systems. Because of pes-
simistic timing assumptions, WCET is often grossly over-
estimated which results in poor resource utilization, espe-
cially in real-time systems using high-performance proces-
sors with advanced pipelining and caching techniques.

WCET is typically estimated as tight as possible by an-
alyzing the WCET of each path in the program—often in
combination with heuristics to prune the number of paths
to analyze. Moreover, this analysis often proceeds from the
first to the last instruction in each path. In doing this, one
must take into account that the execution time (latency) of
each instruction is not fixed; it can take one of many discrete
values depending on input data. The way known methods
deal with this problem [2, 3, 4, 5, 6, 7, 8] is to assume the

longest instruction latency because the intuition is that this
will always result in a conservative estimate of the WCET.
For example, if the outcome of a cache access is unknown,
a cache miss is assumed.

We show in this paper that this intuition is simply wrong
for many processors using dynamic instruction scheduling.
Because the instruction schedule depends on the execution
time of each individual instruction, the scheduling of future
instructions can actually cause a counter-intuitive increase
or decrease in the execution time of the rest of the execution
path. We will show many examples of such timing anoma-
lies in the paper.

To find a safe estimate of the WCET in the presence of
such anomalies, one would have to analyze the effect of all
possible schedules resulting from a variable-latency instruc-
tion to find the instruction latency that leads to the longest
overall execution time. In general, if we haven variable-
latency instructions along a path in the program, where each
instruction may lead tok different future schedules, then, in
the worst case, one must analyzekn different schedules. We
show that previously published analysis methods for cache
and pipeline analysis [2, 3, 4, 6, 8] would result in pro-
hibitive computational complexity to analyze these anoma-
lies.

This paper first identifies necessary conditions for when
timing anomalies can show up in dynamically scheduled
processors and what architectural features may cause them.
We then propose some simple code modification techniques
that eliminate the existence of timing anomalies, thus en-
abling known analysis methods to estimate WCET. The
main idea exploited is to make program modifications that
will guarantee that a future instruction schedule is not af-
fected by a variable-latency instruction. We evaluate the
amount of pessimism introduced on a number of benchmark
programs by instruction-level simulation and a model of a
dynamically scheduled processor. Our main conclusion is
that the pessimism introduced by the modifications is fairly
limited; it is less than 27 % for the programs in our bench-
marks suite.

The rest of the paper is organized as follows. In Sec-

1



tion 2, we first consider when and how timing anomalies
show up in dynamically scheduled processors. In Section 3,
we show why previous methods fail to handle these anoma-
lies. The rest of the paper is devoted to our approach to
handle the anomalies. We introduce the idea of program
modifications in Section 4 which we evaluate experimen-
tally in Section 5. Finally, we discuss our approach and
also point out future directions of research in this area in
Section 6, before we conclude in Section 7.

2. Timing Anomalies in Processors

In this section, we will give examples of the timing
anomalies present in dynamically scheduled processors.
But first, we define necessary conditions that can lead to
such anomalies. The termdynamically scheduled proces-
sorsis often used to describe a processor for which instruc-
tions execute out-of-program-order. In the next section, a
first contribution is that we show that it is not the out-of-
order execution that is the central issue here. Rather, it is
the order in which resources are allocated in the processor.

2.1. Definitions and conditions

The execution time of an instruction can take one of
many discrete values depending on input data. One exam-
ple is a load instruction whose execution time depends on
whether the address hits or misses in the cache. Another
example is an arithmetic instruction whose execution time
may depend on the operands. A common assumption is that
if the worst-case instruction execution time is assumed, the
WCET estimation will be safe. Throughout this paper, we
define atiming anomalyas a situation when such assump-
tions do not hold. For clarity reasons, we will use the term
latencymeaning the instruction execution time. When we
use the termexecution timeit will mean the overall execu-
tion time of the program.

Consider the execution of a sequence of instructions. Let
us study two different cases where the latency of the first
instruction is modified. In the first case, the latency is in-
creased byi clock cycles. In the second case, the latency
is decreased byd cycles. LetC be the future change in ex-
ecution time resulting from the increase or decrease of the
latency. Then:

Definition 1 A timing anomaly is a situation where, in the
first case,C > i or C < 0, or in the second case,C < �d

or C > 0.

That is, ifC is guaranteed to be in the interval:0 � C �

i in the first case or�d � C � 0 in the second case, we
have no timing anomalies.

To model the instruction execution in a pipelined pro-
cessor, one often uses a resource model. In this model,

whenever an instruction that proceeds through a pipeline
gets stalled, it is due to resource contention with another in-
struction that accesses a common resource or operand. Typ-
ical examples of resources are functional units and registers,
but also buses, read and write ports, and buffers should be
treated as resources if they can cause instructions to stall.

The resources that an instruction can use can be di-
vided intoin-order andout-of-order resources. In-order re-
sources can only be allocated in program order to instruc-
tions. Out-of-order resources can be allocated to instruc-
tions dynamically, i.e., a new instruction can use a resource
before an older instruction uses it according to some dy-
namic scheduling decision. Typical out-of-order resources
are functional units that service instructions dynamically
(out-of-order initiation). Examples of in-order resources
are such registers that must be reserved in-order to guaran-
tee that data dependencies in the program are not violated.
Given this definition, it is now possible to state exactly a
sufficient condition when a processor is free from anoma-
lies:

Condition 1 If a processor only contains in-order re-
sources no timing anomalies can occur.

To see why this condition is sufficient, consider a proces-
sor that only contains in-order resources. This means that
two instructions can only use a resource in program order.
If the completion of an instruction is postponed byi cycles,
later instructions will also be postponed since they cannot
allocate the resource before the first instruction. However, it
is possible that future instructions will be postponed by less
than i cycles if the new schedule becomes more compact,
i.e., containing less idle time. The amount postponed can-
not be less than 0 cycles however. Thus,C will be less than
or equal toi and greater than 0. The same principle apply if
an instruction is completedd cycles earlier. To conclude, if
all resources are in-order no timing anomalies may occur.

2.2. Timing anomaly examples

If out-of-order resources are present, timing anomalies
may occur. To see how, we will now study an architecture
containing out-of-order resources and give examples of how
timing anomalies may occur.

The focus of our study will be the model of an architec-
ture seen in Figure 1 based on asimplifiedPowerPC archi-
tecture containing no floating point units. A more realistic
model is expected to contain more features that would re-
sult in out-of-order resource allocation. Our point is then
that even for this simplified architecture, timing anomalies
show up.

The architecture consists of a multiple-issue pipeline, ca-
pable of dispatching two instructions each clock cycle, and

2



2 insns. 256 byte size
direct-mapped
16 byte/block
8 cycles miss pen.

Data Cache
Instruction and

LSU

Latencies

MCIU
IU

4 cycles
1 cycle
2 cycles

Instruction Cache

Data Cache

ID
Insn. decode

DS
Insn. dispatch

Register file
Rename buffers

Reservation
stations (2)

Reservation
stations (2)

Reservation
stations (2)

MCIU IU LSU
Muli-cycle int. unit Integer Unit Load/Store Unit

Figure 1. A simplified, yet timing-anomalous,
PowerPC architecture.

separate instruction and data caches. To implement out-of-
order execution of instructions, each functional unit has two
reservation stations. These can hold dispatched instructions
before their operands are available. Register renaming is
used to avoid unnecessary data hazards. Also needed, but
not shown, is a completion unit with a reorder buffer, which
completes instructions in-order by updating the register file
from the renaming buffers.

All resources in the modeled processor are considered to
be in-order resources except the integer unit (IU) and the
multiple-cycle integer unit (MCIU) which are out-of-order
resources. The load/store unit (LSU) often initiate execu-
tion in-order to preserve ordering of memory accesses so we
also treat it as an in-order resource here. The out-of-order
resources, IU and MCIU, make timing anomalies possible
as we will demonstrate in three examples: one showing that
a cache hit may be worse than a cache miss, another show-
ing that the miss penalty can be greater than expected, and
a third showing a possible domino effect when executing
loops.

Anomaly 1: Cache hits can result in worst-case timing

The first example presents a case where a data cache hit
causes an overall longer execution time than a data cache
miss. Consider the table in Figure 2, which shows a se-
quence of instructions (A-E) and in which clock cycle
they are dispatched. The instructions represent the use of
different functional units: theLD rd,0(ra) instruction
uses the LSU, theADD rd,ra,rb uses the IU, and the

BC

D E

Dispatch time

Reserv. station occupied

Func. unit occupied

cycles1 2 3 4 5 7 8 9 10

A B C D E

11 12 13 14

LSU

IU

MCIU

LSU

IU

MCIU

A

B C

D E

A

Cache
hit

Cache
miss

6

Label Disp. cycle Instruction
A 1 LD r4, 0(r3)
B 2 ADD r5, r4, r4
C 3 ADD r11, r10, r10
D 4 MUL r12, r11, r11
E 5 MUL r13, r12, r12

Figure 2. An example when a cache hit causes
a longer execution time than a cache miss.

MUL rd,ra,rb uses the MCIU. Registerrd is the des-
tination register andra and rb are the source registers.
The registers create data dependencies and thereby an or-
dering between instructions. To simplify the discussion of
the examples we focus only on the functional units and their
reservation stations. We assume that the instructions are dis-
patched according to the relative times seen in the instruc-
tion table in Figure 2 although in reality, on a dual-issue
pipeline, additional instructions would be needed to make
the instructions dispatch according to the example.

The diagram in Figure 2 shows when each functional
unit is busy executing an instruction. Also shown as hor-
izontal dashed lines is when the reservation stations are oc-
cupied. At the top, arrows indicate when each instruction
is dispatched to the reservation stations. Two cases can be
identified, one when the load address hits in the data cache
and one when it misses the cache.

If the load address hits in the cache then theLD instruc-
tion executes for 2 cycles and can forward its result to in-
struction B which can start executing in cycle 3. Here, we

3



D

Cache
miss

Cache
hit

1 2 3 4 5

A B C

LSU

LSU A

A

MCIU

C

MCIU

6 7 8 9 10 11 12 13 14 15 16

C

17 18 19 20 21 22 23 24 25 26 27

D B

28 cycles

B D

Disp.
Label cycle Instruction

A 1 LD r4, 0(r3)
B 2 MUL r5, r4, r4
C 3 LD r6, 0(r5)
D 10 MUL r11, r10, r10

Figure 3. An example when the cache miss penalty is higher than expected.

assume that B gets priority over C since B is older. Thus,
C must wait for B. On the other hand, if the load address
misses in the cache then theLD instruction executes for 10
cycles and the execution of B will be postponed. This means
that C can start executing in cycle 3, one cycle earlier than
in the cache hit case. This will make D and E execute one
cycle earlier as well, leading to an overall reduction of the
execution time by 1 cycle in the cache miss case. In this
case, the anomaly is made possible due to the IU being an
out-of-order resource permitting B and C to execute out-of-
order.

Anomaly 2: Miss penalties can be higher than expected

The second example shows that the overall penalty in exe-
cution time due to a cache miss can be higher than the nor-
mal cache miss penalty. Consider the instruction sequence
in Figure 3. The first instruction is a load instruction which
can either hit or miss in the cache. We assume that the sec-
ond load instruction (C) always misses. The first three in-
structions: A, B, and C, depend on each other and must exe-
cute one at a time. In the cache hit case all instructions will
execute as soon as possible. The last instruction, D, will not
interfere with the execution of the other instructions.

If the first load experiences a cache miss, the execution of
B will be postponed. In this unfortunate case, instruction D
has already started when B becomes eligible for execution
and B will be further postponed. The result of this is that
instruction C will finish executing 11 clock cycles later in
the cache miss case as compared with the cache hit case.
This is greater than the normal cache miss penalty of 8 clock
cycles. In this case, the anomaly is due to the MCIU being
an out-of-order resource, which allows instruction B and D
to execute in arbitrary order.

Anomaly 3: Impact on WCET may not be bounded

We saw in the previous example how the total penalty of
a cache miss can be increased due to changes in the in-
struction schedule. However, it is bounded by a constant
value. We will now show an example when the increase
is not necessarily limited by a constant value, but can be
proportional to the length of the program. This means that
a small interference in the beginning of the execution may
contribute with an arbitrarily high penalty to the overall ex-
ecution time.

Consider the instruction sequence in Figure 4. The two
instructions A and B constitute the body of a loop doing
a number of iterations. The delicate execution scenario
shown here demands special requirements on the dispatch
and execute cycles. Therefore, the table entry for the dis-
patch clock cycle and the additional table entry for the exe-
cute clock cycle show the dispatch and execute clock cycle
relative to a previous instruction. ByEA we mean the clock
cycle when A executed in the previous iteration of the loop.
By DA we mean the clock cycle when A was dispatched in
the current loop iteration.

The two different scenarios shown in Figure 4 are the
result of dispatching and executing the two instructions A
and B repeatedly according to the dispatch and execute cy-
cle rules starting from two different executions of the first
A instruction. In the fast case, instruction A in the first it-
eration executes immediately when it is dispatched. In the
slow case, we imagine that it gets delayed one clock cycle
because of a dependency with an earlier instruction. This
delay in the beginning is enough to cause a domino effect
that will delay the execution of A by one clock cycle in each
iteration. The total penalty on the execution time, caused by
the small delay of A in the beginning, will bek clock cycles
if the loop doesk iterations. In the slow case, we assume
that the old B instruction gets priority over the new A in-

4



A B A A AB B

A B A AB AB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

IU B B B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A A A A

B A B A B AAIU Slow

cycles

Fast

cycles

Label Disp. cycle Execute cycle Instruction
A EA + 5 Immediate ADD r4, r3, r3
B DA + 4 DA + 6 ADD r11, r10, r10

Figure 4. Example of domino effects.

struction in each iteration.
In summary, we have shown three examples when timing

anomalies may show up in dynamically scheduled proces-
sors. These anomalies were possible due to the presence of
out-of-order resources. The first two examples show that
worst-case instruction execution assumptions may result in
optimistic estimates of the WCET if the future scheduling
is not taken into account. It is not difficult to construct
other instruction sequences where similar anomalies appear.
While the last example shows a presumably rare event, it
emphasizes that it may not be safe to make assumptions re-
garding timing on the instruction level.

3. Limitations of Previous Methods

In the previous section we have seen that timing anoma-
lies may occur in dynamically scheduled processors. To
correctly estimate the WCET, one would have to consider
the effect all variations in instruction execution times have
on the possible instruction schedules. We will now con-
sider the problems that arise if we want to perform accurate
pipeline analysis for dynamically scheduled processors and
how previous methods fail to handle these problems. To
simplify the discussion, we will use the following defini-
tions:

Definition 2 The current pipeline state is the current state
of the pipeline timing model. It describes which instruc-
tions are currently executing in the pipeline and the current
resource allocations.

Definition 3 The current cache state is the current content
of the cache timing model. It consists of the cache tag mem-
ory, i.e., the identification tags of the current blocks in the
cache.

Consider first a program containing only a single fea-
sible path. The WCET is then the longest execution time
of the instruction sequence along this path. Assume that
the sequence containsn variable-latency instructions with
unknown latencies, but we know that each instruction can
havek different latencies. Then, we must for each variable-
latency instruction find the latency that causes the longest
overall execution time. To be safe, we must examinekn in-
struction schedules because the execution of each variable-
latency instruction may causek schedules of all succeeding
instructions.

In general, analyzing allkn combinations is not feasible
and another approach is needed. Normally, timing analy-
sis methods rely on the possibility of making safe decisions
locally at the instruction or basic block level. That is, a pes-
simistic choice is always made at this level. Unfortunately,
due to the anomalies, we cannot make a local safe decision.
Consider a partial sequence of instructions, e.g., a basic
block, containing a variable-latency instruction. When sim-
ulating the execution of this partial sequence in the pipeline
we may end up withk different pipeline states. To be safe,
we must then choose the pipeline state that will give us the
longest overall execution time. But this is impossible with-
out knowledge of the whole instruction sequence.

All previously presented methods for doing cache and
pipeline analysis [2, 3, 4, 5, 6, 7, 8] perform the pipeline
analysis by first looking at each instruction or basic block
and then combining the WCET of all these entities into a
total WCET for the whole program. While none of these
methods are designed to handle dynamically scheduled pro-
cessors, they nevertheless rely on a capability to make local
safe decisions when regarding variable-latency instructions.
For example, in [2, 8] the cache analysis is done first and
then later used in a pipeline analysis step. Whenever it is
not possible to classify a cache access as a hit or a miss, it is
conservatively assumed to be a miss. This may lead to a too
optimistic estimation as we have seen in the first anomaly
example according to Figure 2.

Consider next a program containing several feasible
paths. The WCET is then the maximum WCET found
among all paths and in order to find the WCET we would
have to examine all paths in the program. This is, in gen-
eral, not feasible and timing analysis methods again rely
on the possibility of making local safe decisions to reduce
the complexity. When analyzing a small section of the pro-
gram, e.g., a loop, the longest path in this section is chosen
before doing the analysis of the rest of the program. Unfor-
tunately, due to the anomalies, it is not possible to make lo-
cal safe decisions. To see this, assume that the small section
containsl different paths. When simulating the execution
of the different paths in the pipeline we may end up withl

different pipeline states, leading to the same problem as for
the variable-latency instructions. It is not possible to know

5



which pipeline state (path) that gives us the longest overall
execution time.

An example of when local decisions are used to reduce
the path complexity is the prune operation used in [4, 5]. It
is used to discard some combinations of basic blocks that
will execute in shorter time than another combination of
blocks found. To make this pruning decision, one must
know how the execution of some basic blocks will influ-
ence the execution of other parts in the program. Due to,
e.g., the domino anomaly (Figure 4), this can be difficult or
even impossible. The same problem exists in [2] where the
longest path is chosen in each iteration of a loop.

To conclude, when doing timing analysis in the presence
of timing anomalies, it is not possible to make safe local
decisions, i.e., safe choices between the different pipeline
states that an unknown event may give rise to.

Fortunately, we will in the next section show two ap-
proaches that can make it possible for previously published
timing analysis methods to handle dynamically scheduled
processors.

4. Methods for Elimination of Anomalies

In this section, we will present two new approaches to es-
timating the WCET of a program running on a dynamically
scheduled processor where we might experience timing
anomalies. Both approaches can be used together with pre-
viously published timing analysis methods. We first present
the serial-execution method, a pessimistic but safe method
to handle architectures with timing anomalies. After this,
we present a method based on program modifications—by
modifying the program we make it possible for timing anal-
ysis methods to rely on safe local decisions. At the end of
this section, we present a case study of how the program-
modification method can be used together with our previ-
ously published method based on cycle-level symbolic ex-
ecution [6]. We only focus on instruction and data cache
analysis and the out-of-order resource use of the functional
units.

4.1. The pessimistic serial-execution method

A straight-forward way to make safe estimations for ar-
chitectures containing anomalies is to use the pessimistic
serial-execution estimate. This means that we model all in-
structions as being executed in-order in the functional units.
That is, we sum all instruction latencies in the functional
units. In addition to this, we add the miss penalties for all in-
struction and data cache misses. We now formulate a claim
that needs to be proven although intuitive in nature.
Claim: The WCET corresponding to a serial execution of
the instructions, assuming their worst-case latencies, is al-

ways higher than the WCET corresponding to any pipelined
execution of the same instruction sequence.
Proof: Instructions can not execute slower than in-order
since this would mean that some functional units are idle
sometime. This can not be true since instructions are al-
ways available for execution. The only possibility for an
instruction to stall is cache misses which we add separately.

The serial-execution estimate will be safe but maybe too
pessimistic. A big advantage, however, is that unknown
events in the system are handled in a safe way. They can
not lead to a greater execution time than the one estimated
for serial execution.

4.2. The program modification method

The serial-execution method is very pessimistic. If
we want a tighter estimated WCET we must model the
pipelined execution accurately and deal with the problem
of timing anomalies. One way of accomplishing this is to
modify the program so that we can rely on safe local de-
cisions. In short, we want to make sure that the following
conditions are true:

1. All variable-latency instructions that have an unknown
latency must, when simulated, still result in a pre-
dictable pipeline state. Also, we must make sure that
the worst-case latency is used for the instruction. In ad-
dition, other unknown events such as unknown instruc-
tion cache accesses must also result in a predictable
pipeline state.

2. If the number of paths in a small section of the program
is being reduced by selecting the longest one or dis-
carding the shortest ones, then the state of the pipeline
and the caches at the beginning and the end of the paths
must not differ when comparing them.

One way of fulfilling the first condition is to force an
in-order resource use when executing the variable-latency
instruction. Then, the pipeline state must be predictable
before allowing out-of-order resource use again. The way
to accomplish this is highly architecture dependent. Un-
fortunately, no support for in-order resource scheduling is
present in processors today, but other instructions may be
used for this purpose. For example, in the POWERPC ar-
chitecture, there is a memory synchronization instruction
called sync , which inhibits further dispatching until the
sync instruction completes. This instruction can be used as
a way to force serialization together with a variable-latency
instruction.

If one sync is placed after the variable-latency instruc-
tion then the pipeline state will be known afterwards. If one
sync is placed before the variable-latency instruction we
will know for sure that the instruction will execute in-order

6



and the maximum latency will be the worst-case latency.
Also, for other unknown events, like an unknown instruc-
tion cache access, we can also use the same method to make
the pipeline state predictable. In the rest of this paper we
will assume that an instruction such assync exists.

To fulfill the second condition above we can again use
thesync instruction to handle the pipeline state. For exam-
ple, by placing such an instruction at the end of two paths,
the pipeline states in the two paths are made equal to each
other. The state of caches is more tricky to handle. It is
necessary to set the state of the caches corresponding to the
two paths being compared equal to each other. How this
can be done is also highly architecture dependent. There
are several options available:

1. One can invalidate all blocks in the caches. This
should be possible in almost all processors.

2. One can invalidate only the blocks that differ in the
two caches. This requires support for invalidation on
the block level.

3. One can replace the blocks that differ with blocks that
will be needed in the future by preloading blocks into
the caches. This requires support for explicitly loading
blocks into a cache.

The first option of invalidating the entire contents of the
caches is obviously not an attractive solution since the per-
formance will most probably become poor. This is true also
for the second option since each invalidate operation will
in many cases cause an additional cache miss later on. The
third option is the most promising one but requires special
instructions to preload the cache. Examples of such instruc-
tions are the instruction and data cache block touch instruc-
tions (icbt anddcbt ) found in the POWERPC architec-
ture.

When preloading blocks, it is best to preload a block that
will be needed somewhere along the worst-case path. Then,
no unnecessary pessimism is added due to additional cache
misses. In addition, it is often best to place a preload in-
struction outside loops if possible to reduce the overhead.
The best way to preload is a complex issue, which we do
not investigate further in this paper. In the experimental
evaluation, we derived this information manually (see Sec-
tion 5).

When safe local decisions can be made, one can use pre-
viously published timing analysis methods when estimating
the WCET for programs running on a dynamically sched-
uled processor. However, to really use one of these methods
one must also specify at which points in the program a par-
ticular method relies on safe local decisions. Furthermore,
the timing model used by the method must be extended to
model the dynamically scheduled pipeline. If this is possi-
ble and how it is done for each individual method is beyond

the scope of this paper. Yet, in the next section, we will de-
scribe how it is done for our previously published method
based on symbolic execution.

4.3. Case study: symbolic execution method

We will now take a closer look at how the program mod-
ification method can be used together with our previously
published WCET estimation method [6], based on cycle-
level symbolic execution. We start with a brief description
of our timing analysis method.

Our WCET estimation method is based on a cycle-level
architectural simulator, which can be seen as an instruction-
level simulator together with a detailed timing model of the
architecture. By using such a simulator, it is possible to
get tight estimations of the WCET for single paths through
the program. However, in order to estimate the WCET for
the whole program, the simulator has been extended to han-
dle unknown data values to enable symbolic execution of
programs. In addition to exploring all feasible paths in the
program, many infeasible (non-executable) paths are also
eliminated. The number of paths to explore can easily be-
come prohibitive. Therefore, a path merge strategy is used
to reduce the number of simulated paths. Typically, if a loop
contains two feasible paths, these will be merged into one
path before starting a new iteration, thereby reducing the
number of paths to simulate to at most two in this case.

In order to estimate the WCET for a dynamically sched-
uled processor we must first attach the simulator to a tim-
ing model which accurately models the execution of in-
structions in the pipeline including the instruction and data
caches. Then, we must modify the program to be able to
make safe local decisions. This is done by first estimating
the WCET of the unmodified program. In this process, we
identify all places in the program where the analysis needs
to make local decisions. In our case, this is when variable-
latency instructions with unknown latency are found and
whenever a merge operation is done during the analysis. At
all identified places in the program, modifications are ap-
plied in order to make all the local decisions safe, i.e.,sync
instructions are inserted to handle pipeline states that differ,
and all blocks that differ in the instruction and data cache
are replaced by preloading other blocks that will be needed
in the future. Finally, a safe estimation of the WCET of the
modified program can be made.

The integration of the program modification and our
WCET estimation method described here is the one used
in the next section where we evaluate the program mod-
ification method and also compare it with the pessimistic
serial-execution method.

7



Name Description
matmult Multiplies two 50x50 matrices
bsort Bubblesort of 100 integers
isort Insertsort of 10 integers
fib Calculatesn:th element of the Fibonacci sequence

for n � 30

DES Encrypts 64-bit data
jfdctint Does a discrete cosine transform of an 8x8 pixel

image
compress Compresses 50 bytes of data (downscaled version

of compress from SPEC CPU95 benchmark suite)

Table 1. The benchmark programs used.

5. Experimental Evaluation

We have evaluated the amount of pessimism introduced
when estimating the WCET of seven benchmark programs,
using the two methods presented in Section 4: the pes-
simistic serial-execution method, and the program modifi-
cation method. The modeled architecture is the one pre-
sented in Section 2.2, consisting of a dual-issue pipeline
with instruction and data caches.

The key question to answer is how much pessimism is
introduced by the two methods. If the pessimism is too
severe, it will prompt for advancements in timing analy-
sis methods for dynamically scheduled processors. If it is
reasonable, previous methods can be used in combination
with the method presented in this paper to enable tight esti-
mations of WCET for programs on dynamically scheduled
processors.

5.1. Methodology

An overview of the seven benchmark programs can be
seen in Table 1. There are four small programs:matmult,
bsort, isort, andfib, and three larger programs:DES, jfd-
ctint, andcompress. The GNU compiler (gcc 2.7.2.2) and
linker has been used to compile and link the benchmarks.
No optimization was enabled.

To estimate the WCET of the benchmark programs,
the WCET simulator and method described in Section 4.3
has been used. The implementation is built upon the
instruction-level simulator, PSIM [1], which simulates the
POWERPC instruction set. The original simulator has been
extended with a WCET algorithm that uses the simulator to
estimate the WCET by exploring and merging paths in the
program.

The timing model used in the WCET simulator is based
on the model of the POWERPC architecture discussed in
Section 2.2 with the timing parameters according to Fig-
ure 1. However, instead of a detailed simulation model of

the pipeline, we use an analytical approach. During simu-
lation, the functional unit latencies of the simulated instruc-
tions are added together with instruction and data cache
miss penalties. This we call the serial time,Tserial. We
then assume that the timeT to execute the program on the
dual-issue architecture is:

T =
Tserial

2

The relation betweenT andTserial is obviously not this
simple in reality. The above formula would represent the
ideal situation of dispatching two instructions each cycle.
This is often not possible in reality due to cache misses and
pipeline stalls and is highly program dependent. Neverthe-
less, this formula makes it easy to compare the different es-
timation methods. When estimating the WCET our model
automatically produces the pessimistic serial-execution es-
timate. The other estimates are derived by using the formula
above.

When modifying the programs we usedsync instruc-
tions to handle the pipeline state and preload instructions
to handle the instruction and data cache states as described
in Section 4.3. We assumed that a singlesync placed at
a merge point in the program incurs a penalty of 5 cycles
in the dual-issue architecture. When onesync instruc-
tion is placed before and one after a variable-latency in-
struction, we assumed a penalty of 8 cycles, i.e., the sec-
ond sync incurs less penalty than the first one since the
pipeline is already flushed by the firstsync . When adding
preload instructions, the program becomes bigger. The ef-
fect of this on the latency and possible additional instruction
cache misses has been estimated manually and accounted
for in the results. Three integer multiply instructions were
assumed to be variable-latency:mulhw , mulhwu , and
mullw . The multiply immediate instruction,mulli , and
all other instructions were assumed to have fixed latencies.

5.2. Evaluation results

The results from our evaluation of the seven benchmark
programs can be seen in Table 2. The actual WCET has
been determined by simulating the program using the worst-
case input data, or using random input data if the worst-
case input was to complex to determine. The table also
shows the estimated WCET when using the serial method
and when using the modified program method. Also in-
cluded for comparison purposes is the unsafe program es-
timate, i.e., the dual-issue timing model has been assumed
but no program modifications have been made. This is un-
safe since timing anomalies can lead to an underestimation
of the WCET. The ratio columns in the table is the es-
timated WCET values divided by the actual WCET. The
modified slowdown is the modified program estimate di-

8



Measured Estimated WCET
Actual Unsafe program Serial method Modified program Modified

Program WCET WCET Ratio WCET Ratio WCET Ratio slowdown
matmult 5283287 5283287 1 10566574 2 6323287 1.20 1.20
bsort 230490 230490 1 460981 2 256854 1.11 1.11
isort 2085 2085 1 4170 2 2325 1.12 1.12
fib 797 797 1 1594 2 797 1 1
DES 186166 186358 1.001 372716 2.002 186358 1.001 1
jfdctint 9409 9409 1 18819 2 9921 1.05 1.05
compress 16486 54583 3.31 109167 6.62 69291 4.20 1.27

Table 2. The estimated WCET using the serial method and when using modified programs.

vided by the unsafe program estimate and shows the amount
of pessimism introduced when modifying the programs.

The serial method overestimates the WCET by at least a
factor of 2. This is expected and is a result of our assumed
timing model. However, forDESandcompress, additional
sources contribute. InDES, the small additional overesti-
mation is due to data accesses with an unknown reference
address. These unpredictable accesses must not be cached
in order to keep the cache state predictable. This is accom-
plished by mapping the accessed data structures into a non-
cacheable part of the memory as suggested in [6]. Then,
unpredictable accesses will not interfere with the cache and
will always cause a cache miss. Incompress, a small part
of the overestimation is also due to unpredictable data ac-
cesses. In addition to this, the path analysis fails to elim-
inate all infeasible paths due to a pessimistic upper bound
on a loop (a more thorough description of this loop can be
found in [6]).

The estimated WCET of the modified programs is
shorter than the serial estimate for all examined programs.
In fib andDES, the program modification method gave no
slowdown at all since no modifications were needed. These
two programs contain no variable-latency instruction and
during the analysis, no merging was done.

In matmultandjfdctint, the slowdown is caused entirely
by variable-latency instructions. No merging was done dur-
ing the analysis. Injfdctint, variable-latency multiplications
are only used in the beginning of the program and the in-
sertedsync instructions have therefore quite small impact
on the estimated value. Inmatmult, however, the multiplica-
tions are common and the insertedsync instructions give
a slowdown of 20 %.

For the remaining programs,bsort, isort, andcompress,
it is the merging that contribute most to the slowdown. In
bsort andcompress, there are a small number of variable-
latency multiplications but the effect of those instructions is
negligible. Inbsort and isort, the merging occurred at one
place in the program. At this place, async instruction was
added, which resulted in a slowdown of 11 % and 12 % for

bsortandisort, respectively. The highest slowdown experi-
enced, 27 %, was forcompress. This is explained by the fact
that merging occurred at four different places incompress,
each requiring async instruction.

At the merge place inbsort and isort, and at two of the
four merge places incompress, preload instructions for the
instruction cache were needed. At these merge places, the
instruction cache states differed in the paths being merged.
The number of blocks to preload varied between 6 and 10
among the three programs. By preloading blocks that were
needed along the worst-case path no extra cache misses oc-
curred and the effect of these preload instructions is very
small compared to the merging. The data cache states never
differed when merging paths in the programs.

In summary, our program modification method can per-
form well in conjunction with our symbolic execution
method for all our benchmark programs. It works especially
well for programs that have few variable-latency instruc-
tions and only one feasible path so that merging is avoided
when analyzing the program. On the other hand, if a pro-
gram contains many variable-latency instructions or many
feasible paths then the serial method could perform nearly
as well or maybe better. For example, if optimization is
enabled when compilingmatmult, the variable-latency mul-
tiplications becomes relatively more frequent. This would
change the slowdown from a factor of 1.2 to approximately
1.5, thus approaching the slowdown of the serial method.

6. Discussion and Future Work

The results show that our program-modification method
can be used to obtain safe and fairly tight estimations of the
WCET for our benchmark programs. This suggests that, for
a certain class of programs, running on dynamically sched-
uled processors, it is possible to make safe and tight estima-
tions of the WCET. However, to use the method, there must
be some support in the architecture to be able to explicitly
control the state of caches and the resource allocation in the
pipeline. Ideally, one would need explicit program control

9



of all internal state in a processor that may influence the
future timing of instructions. If no support exists for ex-
plicit control of the state of caches or the pipeline, then one
is forced to use the serial estimation method which often
leads to more pessimism in the estimated WCET.

When using the program modification method the re-
sources in the processor can be used out-of-order except
at the modification points in the program where we force
an in-order execution. An important consequence of this is
that we must statically account for all unknown events and
modify the program at the proper places. This forbids the
use of preemptive scheduling where a program can be in-
terrupted at any time. However, limited preemption would
be possible by treating preemption points in the program as
being similar to merge points. The cache and pipeline state
must be predictable at all points, regardless of the program
being preempted or not. The serial-execution method does
not rely on making unknown events safe and can be used
together with preemptive scheduling.

It is quite possible that a better analysis method can be
invented that results in tighter estimations of the WCET.
However, when the processor allows out-of-order resource
allocation, timing anomalies can occur. A better analysis
method could avoid the program modifications, but each
unknown event must still be statically known and statically
analyzed. An alternative interesting option would be to in-
clude the possibility to control the resource allocation in
a processor. Then, the processor could be forced to allo-
cate resources in-order resulting in a stable scheduling of
instructions but probably also lower performance.

In this paper, we have only dealt with the handling of
caches and the basic pipeline. To make the methods pre-
sented here useful, other features in an architecture must
also be analyzed. For example, further research is needed
to analyze the effect of speculative branches and branch his-
tory buffers and how to explicitly control the state of these
features. Moreover, we only consider dynamic scheduling
done for the functional units. To assure a safe estimate,
other features need to taken into account, such as out-of-
order load/store-accesses and contention between accesses
from the instruction and data cache going to the main mem-
ory.

7. Conclusions

Most high-performance processors today use several fea-
tures that allow out-of-order execution. We have shown that
previous methods fail in estimating WCET because they as-
sume that one can rely on worst-case assumptions for local
entities such as instructions and basic blocks to estimate the
effect on the overall WCET.

In order make available methods useful, we propose to
make program modifications to make unknown instruction

latencies predictable. This allows existing methods to es-
timate the WCET safely. We applied these program mod-
ifications to seven benchmark programs and estimated the
WCET of these programs using a model of a dual-issue
pipelined processor with instruction and data caches. We
found that the pessimism imposed by the program modifi-
cations is less than 27 % for the programs in our bench-
mark. This suggests that for a certain class of programs,
useful estimates of the WCET can be obtained for dynami-
cally scheduled processors.

8. Acknowledgment

We are grateful to Dr. Jan Jonsson for his construc-
tive comments. This research is supported by a grant from
Swedish Research Council on Engineering Science (TFR)
under contract number 221-96-214.

References

[1] A. Cagney. PSIM, a POWERPC simulator.
http://sourceware.cygnus.com/psim/.

[2] C. A. Healy, D. B. Whalley, and M. G. Harmon. Integrating
the timing analysis of pipelining and instruction caching. In
Proceedings of the 16th IEEE Real-Time Systems Symposium,
pages 288–297, December 1995.

[3] Y.-T. S. Li, S. Malik, and A. Wolfe. Efficient microarchi-
tecture modeling and path analysis for real-time software. In
Proceedings of the 16th IEEE Real-Time Systems Symposium,
pages 298–307, December 1995.

[4] S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L. Min, C. Y.
Park, H. Shin, K. Park, and C. S. Kim. An accurate worst case
timing analysis technique for RISC processors. InProceed-
ings of the 15th IEEE Real-Time Systems Symposium, pages
97–108, December 1994.

[5] S.-S. Lim, J. H. Han, J. Kim, and S. L. Min. A worst case
timing analysis technique for multiple-issue machines. In
Proceedings of the 19th IEEE Real-Time Systems Symposium,
pages 334–345, December 1998.

[6] T. Lundqvist and P. Stenström. An integrated path and tim-
ing analysis method based on cycle-level symbolic execution.
Real-Time Systems, 17(2/3):183–207, November 1999.

[7] G. Ottosson and M. Sjödin. Worst-case execution time anal-
ysis for modern hardware architectures. InProceedings of
ACM SIGPLAN Workshop on Language, Compiler, and Tool
Support for Real-Time Systems, pages 47–55, June 1997.

[8] H. Theiling and C. Ferdinand. Combining abstract interpre-
tation and ILP for microarchitecture modelling and program
path analysis. InProceedings of the 19th IEEE Real-Time
Systems Symposium, pages 144–153, December 1998.

10


