
A Method to Improve the Estimated Worst-Case Performance of Data Caching

To appear in Proc. of the 6th International Conference on Real-Time Computing Systems and Applications (RTCSA’99), December 1999

Thomas Lundqvist Per Stenström

Department of Computer Engineering
Chalmers University of Technology

SE-412 96 G̈oteborg, Sweden
fthomasl,pers g@ce.chalmers.se

Abstract

This paper presents a method for tight prediction
of worst-case performance of data caches in high-
performance real-time systems. Our approach is to dis-
tinguish between data structures that exhibit a predictable
versus unpredictable cache behavior. Cache performance
of accesses to predictable data structures can be automat-
ically and accurately determined by our method whereas
we let accesses to unpredictable data structures bypass the
cache to simplify and improve the analysis. Through exper-
imentation with a number of benchmark programs, we show
that a vast majority of data accesses stems from predictable
data structures. We analyze what kind of data structures
that fall into this category. Remarkably, we find that all
data structures in five out of the seven programs are pre-
dictable and will lead to a worst-case cache performance
which is as high as the real performance. Moreover, for the
remaining two benchmarks a majority of the accesses go
to predictable data structures. Hence, empirically our data
suggest that data caching is expected to improve worst-case
performance considerably using our method.

1. Introduction

Cache memories have been a key innovation to shorten
the average memory access time to the comparably slow
memories. In many real-time systems, however, a high av-
erage performance is not the primary concern. Instead, an
estimate of the worst-case performance is needed. A con-
servative approach to estimate the worst-case performance
would be to assume that all memory accesses miss in the
cache. Obviously, this is not only overly pessimistic; in
fact, some of the memory accesses are predictable in the
sense that whether they hit or miss in the cache could be de-
termined before the program is run in absence of input data.
The hope is that a vast majority of the memory accesses are

predictable so that caches can help reducing the worst-case
execution time significantly. Then, real-time systems can
exploit the performance potential of caches used in contem-
porary high-performance microprocessors.

Several estimation methods have been proposed that pre-
dict the impact of caches on the worst-case execution time
(WCET) [1–3,5–13]. One general observation regarding all
methods is that the fetching of instructions is often highly
predictable and can be accurately analyzed. Thus, instruc-
tion caching can often be used effectively in real-time sys-
tems. On the contrary, memory accesses going to the data
cache are often unpredictable and difficult to analyze. It is
presently unclear to what extent data caches can improve
worst-case performance.

The goal of this paper is to develop a method to make it
possible to predict the expected effectiveness of data caches
in real-time systems. We do this in the context of a single
uninterrupted (non-preemptive) program execution. Based
on a published state of the art WCET estimation method [9],
which is described in Section 2, we develop concepts and
propose a method to analyze the impact of predictable and
unpredictable memory accesses on the worst-case perfor-
mance of data caches. Our approach is to distinguish be-
tween memory accesses to data structures that are pre-
dictable and unpredictable.

In Section 3, we present a method that extends the
WCET method in [9] with the capability of automatically
identifying predictable and unpredictable data structures.
We provide examples of frequently used types of data struc-
tures that fall into these two categories and also propose a
new method for making their cache behavior predictable.
In comparison with previously published methods [5, 13]
that charge a penalty as high as two misses to each unpre-
dictable access, our approach is to identify and not cache
unpredictable data structures. Accesses to such data struc-
tures can thus be easily analyzed. The question becomes
how big fraction of all data accesses that go to predictable
data structures whose cache behavior can thus be accurately
predicted.



In order to evaluate the fraction of accesses that go to
predictable data structures, we have analyzed a number of
benchmarks using our method. This is done in Section 4.
Interestingly, we find that five out of seven benchmarks con-
tain only predictable data structures; hence, data caches can
be fully exploited. For the other two applications, more than
62 % of the memory accesses go to predictable data struc-
tures. Our results thus suggest that data caching can be pre-
dictably used with preserved good worst-case performance.
We finally relate our findings to work done by others in Sec-
tion 5 before we conclude in Section 6.

2. WCET Estimation

Before we consider how to identify and handle unpre-
dictable accesses, we will first briefly describe how the
WCET of a program can be estimated using a state of the
art method. For details, please consult [9].

The WCET of a program is defined as the worst-case
execution time of the longest possible path through the pro-
gram. To obtain tight estimations of the WCET, it is nec-
essary to do both accurate path and timing analyses. In our
view, path analysis is responsible for eliminating infeasi-
ble (non-executable) program paths and timing analysis is
responsible for estimating the execution time of all the re-
maining (feasible) paths in the program.

Our previously presented WCET estimation method per-
forms both automatic path and timing analyses using cycle-
level symbolic execution. Cycle-level symbolic execution
means that the timing of all feasible paths are analyzed us-
ing cycle-level timing models of the target system. Each
path is executed symbolically by dealing with operands that
can have an unknown value. Thus, if a branch is encoun-
tered that does not depend on unknown input data, the path
that is infeasible is automatically excluded from the anal-
ysis. This is achieved by extending the execution model,
in essence an architectural simulator, with the capability of
handling unknown data. The semantics of all arithmetic op-
erations associated with instructions is extended to operate
on unknown input data. As a result, loop bounds, for exam-
ple, that can be statically computed can be derived during
the symbolic execution. Therefore, an accurate path and
timing analysis can be achieved.

A potential complication of the method is its computa-
tional complexity associated with the exponential growth
of paths to be analyzed. In a loop with several feasible
paths in the loop body, for example, the number of paths
to analyze grows exponentially. This problem is alleviated
using a path-merge strategy: each time several simulated
paths meet in the program they are merged into one. The
merging procedure aims at discarding the path that may not
contribute to the longest path through the program. The ap-
proach taken is to compare the worst-case impact on the

future execution of the two paths. Based on this, the short-
est path is discarded. In addition, a worst-case system state
is assumed in which variable values that differ in the two
paths will be assumed to be unknown. Thus, the method
may cause additional variable values to become unknown
in addition to those that depend on unknown input data.

The method has been empirically evaluated by applying
it to WCET estimation of a number of programs run on a
multiple-issue pipelined processor with instruction and data
caches. In [9], it has been shown that the WCET can be ac-
curately estimated for six out of the seven studied programs.

This method naturally analyzes the impact of data caches
on the WCET because it can take into account operands
whose values are either known orunknown. Therefore,
cache behavior of accesses whose reference addresses are
statically known is completely predictable. On the other
hand, accesses whose reference addresses areunknown, ei-
ther as a result ofunknowninput data or as a result of
operand values that becomeunknownduring the analysis,
will result in unpredictable cache behavior. In the next sec-
tion, we will use this property to develop a method that
can distinguish between predictable and unpredictable data
caching so as to automatically analyze the worst-case per-
formance of data caches.

3. Approach to Improved Cache Analysis

In order to extend state of the art WCET methods to
make accurate and tight predictions of data cache perfor-
mance, we start in Section 3.1 to state concepts to reason
about data cache predictability. We then present our method
in Section 3.2 which is based on the notion of distinguish-
ing between predictable and unpredictable data structures.
Finally, based on this, we build intuition into what types of
data structures are expected to be predictable. We will test
our intuition experimentally in the subsequent sections of
this paper.

3.1. Data cache predictability definitions

To understand how our method handles unpredictable ac-
cesses, we need to distinguish between the following: a
data memory access instruction in the program code, the
actual memory access done by the instruction at some point
in time, and the data structure in the main memory that is
the target of the access.

Definition 1 An unpredictable memory access is a load or
store access whose reference address is unknown during es-
timation of the WCET. Conversely, a predictable memory
access is a load or store access whose reference address is
known during the estimation of the WCET.



The reasons why the reference address is unknown are
twofold: First, it could be unknown because it depends on
unknown input data. Second, even if the reference address
does not depend on unknown input data, the WCET method
could introduce uncertainties that actually make some of
the operands in the program unknown. For example, in the
method outlined in the previous section, the system state of
two paths that meet is compared. If the same operand has
different values in the two paths, it will be assumed to be un-
known in order to make it possible to drop one of the paths
and make sure that a worst-case value has been assumed.
Therefore, whether an access is predictable or not depends
also on the WCET estimation method used.

Definition 2 An unpredictable memory access instruction
is a load or store instruction that generates at least one
unpredictable memory access. Conversely, a predictable
memory access instruction is a load or store instruction that
only generate predictable memory access.

Because loop constructs are common in most programs,
a particular load or a store instruction is executed many
times. The purpose of this definition is to identify all load
and store instructions that can generate at least one unpre-
dictable memory access. One way of exploiting the fact
that a memory access instruction is unpredictable would be
to tag it as non-cacheable, thereby avoiding it to interfere
with data that can be predictably cached.

Definition 3 An unpredictable data structure is a data
structure that is accessed by at least one unpredictable
memory access. Conversely, A predictable data structure is
a data structure that is accessed by only predictable mem-
ory accesses.

This definition illustrates an approach to achieve a high
predictable data cache performance. If a data structure
is only accessed by loads and stores whose reference ad-
dresses are known (predictable) during the WCET estima-
tion, the data structure can be predictably cached. Thus, if it
is possible to automatically distinguish between predictable
and unpredictable data structures, it should be possible to
achieve a predictable data cache behavior. The method pre-
sented in Section 3.2 has this goal in mind.

The most important characteristic of unpredictable mem-
ory accesses is that we connect it to the WCET estimation
method used. This is reasonable since it is hard to give
a general, method-invariant definition of unpredictable ac-
cesses that is not very vague and thereby useless. An im-
plication of the definitions is that whether a data structure
is unpredictable or not also depends on the method used.
In this paper, when unpredictable data structures are men-
tioned, they are connected to the state of the art WCET es-
timation method presented in the previous section.

When looking at a fixed path through a program, pre-
dictable memory access instructions are typically those that
always generate the same reference address or the same se-
quence of addresses, regardless of program input data. For
example, many estimation methods [2, 5, 7, 11, 13] are ca-
pable of handling accesses to global scalar variables. These
variables are accessed using a fixed reference address that
is independent of input data and is fairly easily deduced by
an estimation method. Thus, these variables are predictable
data structures when regarding all methods.

3.2. A predictable cache analysis method

We will now describe a method that makes it possible
to identify and handle unpredictable memory accesses. We
especially study how to use our previously presented WCET
estimation method, but the principles presented here can be
applied also to other WCET estimation methods presented
in the literature as we will discuss in Section 5.

As a first step, we identify all unpredictable accesses by
performing a WCET analysis. As explained in Section 2,
the WCET method automatically identifies all loads and
stores whose reference addresses are unknown. Therefore,
all memory accesses which have an unknown reference ad-
dress can be collected. To reduce the amount of informa-
tion all unknown references are not collected but only the
corresponding memory access instructions. Thus, the re-
sult is a list of unpredictable memory access instructions
and we consider all memory accesses from these instruc-
tions as unpredictable. In the next step, each unpredictable
memory access instruction is connected to the correspond-
ing data structure. This requires information from the com-
piler or user about which data structure each memory access
instruction can touch. Each data structure that is accessed
by an unpredictable memory access instruction is marked
as unpredictable. In the final step, linking is redone in or-
der to map all data structures marked as unpredictable into
a special memory area. This memory area will be marked
as non-cacheable.

When all unpredictable data structures have been identi-
fied and properly remapped, a final estimation of the WCET
can be done. Now, the time taken to access an unpredictable
structure is equal to the miss penalty. Assuming a memory
hierarchy with a single level, the miss penalty is simply the
memory access time. If we would have allowed caching
of the unpredictable access, the time charged could in the
worst-case have been two cache miss penalties: one for the
potential cache miss and one for the possibility of replac-
ing a useful block. In addition, the time taken for a cache
lookup must be added. In summary, by letting all unpre-
dictable accesses bypass the cache we may gain more than a
factor of two on the worst-case performance of data caches.



Storage type Explanation
Global Global or static structures.
Stack Stack allocated structures.
Heap Dynamically allocated structures on the heap.

Access type Explanation
Scalar Only one element.
Regular array Array accessed by regular, stride accesses.
Irregular Irregular accesses but still input data independent.
Input dependent Reference addresses directly depends on input data.

Table 1. Data structure classification based on storage type (upper) and access type (lower).

The approach presented here requires support in the
computer system for controlling the caching of different
memory areas. Fortunately, hardware mechanisms that per-
mit us to do this exist in many microprocessors that use
caches. In some systems, we can even choose if we want
to cache or not to cache each individual data access. As an
example, PowerPC 403 GA [4] has a double-mapped mem-
ory address space. This means that one physical memory
location can be reached from two different addresses and
we can choose different cacheability for the two addresses,
one cache-enabled address and one cache-disabled address.
Other hardware mechanisms also exist; in many general-
purpose processors, support often exists for virtual memory
where cacheability can be controlled on a per page basis.
This can be used to create a similar double-mapping, allow-
ing individual accesses to be either cached or not cached.

Even if hardware permits cacheability control of each in-
dividual memory access, this can be hard to exploit since
it would require quite complex compiler support. Another
available approach is to control each individual memory ac-
cess instruction. This would allow caching of accesses to a
data structure when it is used predictably in some parts of
the program and not caching accesses when it is used unpre-
dictably in other parts. Still, compiler interaction is needed
and care must be taken to keep the contents of memory and
cache consistent by flushing the cache at proper points or
by using a write-through policy.

In this paper, for simplicity we have only evaluated how
to control cacheability on a data-structure level. This re-
quires only support from the linker in order to control the
placement of individual data structures. Also, there is no
consistency problem as data is either cached or not cached.

3.3. Data structure classification

Based on the notion of predictable versus unpredictable
data structures, we now develop intuition into what data
structures are expected to fall into each of these two cat-
egories. It should be noted though that this generally de-

pends on the WCET method used. We will therefore com-
ment on to what extent the intuition depends on a certain
WCET method.

In Table 1 we classify data structures with respect to stor-
age type (upper table) and access type (lower table). The
storage type determines what base address is used to access
an element in the data structure. This base address is typ-
ically stored in a specific register (global, stack, or heap).
Additionally, the access type determines how elements us-
ing the same base address are accessed and typically uses
a fixed offset (scalar) or a varying offset that is calculated
for each access (regular, irregular or input data dependent).
Whether a data structure is predictable or not typically de-
pends on both the storage type and the access type.

Let us first discuss predictability properties of data struc-
tures of different storage types. Global storage is the most
simple one because the base address is a fixed known value
produced by the linker. Stack allocated structures may look
hard to analyze. Yet, they are often handled predictably by
all estimation methods. The general approach adopted is to
only estimate the WCET for complete programs since then
the stack pointer is known. If only a single function or pro-
cedure in the program is analyzed the stack pointer would
be unknown. The estimation method must keep track of the
function call stack, and if a function is called from several
places in the program each invocation of the function must
be treated as a separate instance. Then, each function in-
stance will have a fixed stack pointer value and thereby a
known base address for stack allocated structures. This is
supported by the WCET method used in this paper.

The most tricky storage type is heap storage, i.e., dy-
namically allocated memory on the heap. Due to its unpre-
dictable behavior, this kind of allocation is not always per-
mitted in real-time systems. However, the WCET method
used in this paper allows some limited use of dynamic allo-
cation. A necessary condition for predictable dynamic allo-
cation is that the memory must be allocated in an order and
in an amount that is independent of input data. This means
that at each point in time, we always know which objects



reside on the heap and in which order they are allocated.
Then, the base address of the allocated data structures are
known. Using dynamic allocation in this controlled manner
may seem a bit pointless but can still be useful. For exam-
ple, it would allow the programmer to write programs that
reuse memory in a straight-forward way.

A known base address of a data structure is not enough to
make it predictable. The access type must also be taken into
consideration. For scalar variables, the base address is the
only thing used. They are therefore predictable whenever
the base address is predictable. Regular array accesses, i.e.,
accesses with a constant stride, are considered to be such
accesses that can be predicted using e.g. data dependency
analysis. This kind of analysis is treated in for example [2]
and typically handles the case where the reference address
is a simple function of the loop iteration variables. Many
methods can analyze this kind of accesses.

A data structure accessed by irregular accesses may in
theory be predictable since the accesses are independent of
input data. However, many estimation methods would clas-
sify it as unpredictable because of lacking analysis of com-
plex data dependencies. Nevertheless, as we will see in Sec-
tion 4, the estimation method used in this paper manages to
handle a case of irregular accesses, showing that some ir-
regular data structures can indeed be predictable.

Finally, a data structure accessed by input data dependent
accesses will always be unpredictable as long as input data
is considered to be unknown.

In summary, we can note that many types of data struc-
tures are expected to be predictable using state of the art
WCET estimation methods. This makes us expect that data
caching can be effective in achieving a high worst-case per-
formance for data caches. We test this hypothesis in the next
section.

4. Experimental Results

In order to evaluate how much the worst-case perfor-
mance is improved when using data caching, we have clas-
sified data memory accesses based on WCET estimation of
seven benchmark programs and determined the fraction of
memory accesses that go to unpredictable data structures.
We have also measured the data cache hit-rates and the
corresponding WCET when counting all accesses to unpre-
dictable data structures as misses.

4.1. Methodology

The state of the art WCET estimation method presented
in [9] has been used to first classify all data structures ac-
cording to the method presented in Section 3.2. Then, the
WCET estimation tool has been extended to also collect all
data memory accesses along the worst-case path during the

Name Description
matmult Multiplies two 50x50 matrices
bsort Bubblesort of 100 integers
isort Insertsort of 10 integers
fib Calculatesn:th element of the Fibonacci

sequence forn � 30

jfdctint Does a discrete cosine transform of an 8x8
pixel image

DES Encrypts 64-bit data
DES-opt DES compiled with optimizations enabled
compress Compresses 50 bytes of data (downscaled

version of compress from SPEC CPU95
benchmark suite)

Table 2. Characteristics of the programs used.

analysis. The collected memory accesses have been classi-
fied according to which type of data structure they access.
The categories of data structures considered are the ones
presented in Section 3.3.

The timing model assumed for the hit-rate and WCET
estimations represents an ideal architecture containing only
a data cache. All instructions execute in a single cycle ex-
cept on a data cache miss when a miss penalty of 10 cycles
is added. The data cache is a 2 Kbyte direct-mapped cache
with 16-byte block size. When regarding the data cache,
loads and stores were treated as equivalent to each other.

An overview of the seven programs can be seen in Ta-
ble 2. There are four small programs:matmult, bsort, isort,
andfib, and three larger programs:jfdctint, DESandcom-
press. The GNU compiler (gcc 2.7.2.2) and linker has been
used to compile and link the programs. No optimization
was enabled except forDES-optwhich was compiled with
the option-O2 . The simulated run-time environment con-
tained no operating system; consequently, we disabled all
calls to system functions such as I/O in the programs.

4.2. Results

The results from the memory access classification can
be seen in Figure 1. The first five benchmarks,matmult,
bsort, isort, fib, and jfdctint, were found to contain only
predictable data structures. In all these five benchmarks, the
majority of the accesses aimed at scalar variables allocated
on the stack. Another common effect is that most regular ar-
ray accesses were either allocated globally (matmult, bsort,
andjfdctint) or on the stack (isort). All the accesses to these
data structures were found to be predictable when estimat-
ing the WCET and we thereby confirm the intuition from
Section 3.3 that scalar and regular array accesses to global
or stack allocated structures are predictable.



matmult bsort isort

Scalar, global 1.4 % 0.1 % 2.6 %
Scalar, stack 49.9 % 77.0 % 66.6 %
Regular, global 48.7 % 22.9 %
Regular, stack 30.8 %

Total accesses 1057597 130652 876
fib jfdctint

Scalar, global 3.5 % 0.5 %
Scalar, stack 96.5 % 80.9 %
Regular, global 18.6 %

Total accesses 397 2754
DES DES-opt compress

Scalar, global 4.1 % 10.3 % 24.4 %
Scalar, stack 84.5 % 59.2 % 36.4 %
Regular, global 5.4 % 14.5 % 1.7 %
Regular, stack 0.6 % 1.5 %
Irregular, global 4.9 % 13.0 %
Input dep, global 0.6 % 1.5 % 37.5 %

Total accesses 45876 17200 8852

Figure 1. Classified memory accesses from the worst-case program path.

In the last benchmarks,DES, DES-opt, andcompress,
unpredictable data structures were found. InDES two ar-
rays are read using an index that depends on unknown input
data. However, only 0.6 % of all accesses went to these ar-
rays and the majority of accesses did again reference scalar
variables allocated on the stack. The same is valid forDES-
opt, although the amount of scalar stack accesses has been
reduced. This reduction is expected and can be explained
by the fact that scalar stack storage is often used as tempo-
rary storage by the compiler. Part of this temporary storage
can often be eliminated by the compiler when enabling opti-
mization. The reduction of scalar stack accesses makes the
other accesses relatively more significant. Still, only 1.5 %
of all accesses is unpredictable inDES-opt.

An interesting fact is that the WCET method managed
to handle some cases of irregular arrays accesses inDES
andDES-opt. Some arrays were accessed using an index
obtained from another, regular array access. Thus, the array
references are independent of input data and were found to
be predictable by the WCET estimation method we used.
To the best of our knowledge, this kind of array accessing
would have been found unpredictable by all other WCET
estimation methods.

In the final benchmark,compress, four data structures
were found to be unpredictable. The dominant structures in

this case were two hash tables (total size 1.5 Kbyte) indexed
by unknown input data. In total, 37.5 % of all accesses went
to these unpredictable data structures. Of these 37.5, unpre-
dictable accesses contributed with 30. The rest, 7.5 was the
contribution from predictable accesses during the initializa-
tion of the hash tables. This means that it would have been
better to control the cacheability on the instruction level in-
stead of a data structure level. However, the gain would
have been small.

Table 3 summarizes the amount of memory accesses that
were found to be predictable. Also shown is the correspond-
ing data cache hit ratio. As explained before, almost all
accesses were predictable in all benchmarks except incom-
press. This can also be seen in the hit ratio numbers which
are close to 100 % in all benchmarks exceptcompresswhere
the unpredictable accesses cause a significant reduction of
the hit ratio.

To understand the importance of data caching, we have
also included the estimated WCET for two cases: one when
all accesses to predictable data structures are cached and an-
other when caching is disabled and all accesses are counted
as misses. Ratio is the cache-disabled WCET divided by
the cache-enabled WCET. It represents the improvement of
the worst-case performance obtained when including a data
cache. Clearly, for the majority of the programs studied,



Fraction Data cache No data cache
Name predictable hit ratio WCET WCET Ratio
matmult 100 % 92.1 % 7899863 17639883 2.2
bsort 100 % 97.8 % 320887 1598547 5.0
isort 100 % 98.1 % 2765 11355 4.1
fib 100 % 96.5 % 838 4668 5.6
jfdctint 100 % 98.7 % 6361 33551 5.3
DES 99.4 % 98.8 % 124276 577436 4.7
DES-opt 98.5 % 96.8 % 53905 220345 4.1
compress 62.5 % 62.0 % 82190 137050 1.7

Table 3. Fraction predictable accesses and corresponding hit-rate.

data caching is efficient and improves the worst-case per-
formance significantly, in many cases by a factor of four or
more. Even forcompress, we get a considerable improve-
ment of a factor 1.7 when using a data cache in spite of all
the unpredictable accesses encountered.

5. Discussion and Related Work

The WCET estimation method used in this paper handles
quite complex data dependencies and identifies many data
structures as predictable, even the irregular ones inDESas
seen from the results. An interesting question is if the use
of another WCET estimation method would have changed
the results drastically. According to our belief, other meth-
ods would also make a good analysis of many of the pro-
grams. For example, the methods presented in [2, 5, 7, 13]
should be able to produce similar results as the method we
used for the first five benchmarks. These benchmarks only
contain data structures that are fairly simple to handle. The
most complex one is regular array accesses which, accord-
ing to our belief, could be handled by all mentioned meth-
ods. On the other hand, the other methods would probably
perform worse onDESandDES-opt, due to the irregular ar-
ray accesses present, which are accurately analyzed by the
method we used.

The handling ofcompressby other methods is largely de-
pendent on which strategy they use to handle unpredictable
accesses. This strategy is not always made clear from the
descriptions of the methods but in for example [5] they
adopt the strategy of caching unpredictable accesses. Then,
to make a safe estimate of the WCET, two miss penalties
must be added for each unpredictable access: one for the
possibility of a cache miss and another for the possibility of
replacing another useful block. This strategy would reduce
the worst-case performance quite drastically forcompress.
The resulting estimated WCET by our method when using
this strategy is 108690 cycles which is only a factor of 1.26
better than not caching at all. This can be compared to a
factor of 1.7 obtained when using the method in this paper.

The method of identifying unpredictable data structures,
described in Section 3.2, is not limited to the WCET estima-
tion method used in this paper. The same method could be
used together with other estimation methods. The important
criterion is that a list of all instructions generating accesses
with an unknown reference address can be created during
the estimation. This information can probably be generated
early in the estimation procedure since deducing the refer-
ence addresses of data accesses is often the first step needed
when analyzing data cache behavior.

In this paper, a state of the art WCET estimation method
presented in [9] has been used to identify unpredictable data
structures and estimate the WCET of seven benchmarks
programs. The results obtained are probably very hard to
improve upon since the unpredictable accesses in for exam-
ple compressdepends on unknown input data and are very
random in nature. Thus, the results obtained for the bench-
marks in this paper is as good as it can get. However, for
other programs it is possible that accesses to data structures
that we would classify as unpredictable could be turned into
predictable when using other methods. As an example, con-
sider regular accesses to an array allocated on a heap with an
unknown base address. The WCET method we use would
then classify the array as unpredictable. However, another
method could predict some of the behavior based on up-
per or lower bounds on the number of misses or hits in the
cache. The feasibility of this approach depends on how
advanced data dependency analysis that can be made and
we find it currently unclear if other methods could handle a
case like this. For predictable data structures, many meth-
ods [2, 5, 7, 13] use the approach of calculating upper and
lower bounds on the number of misses or hits.

A rather different approach of handling data cache anal-
ysis is described by Basumallick and Nilsen [1] where they
use a register allocation algorithm to allocate data into dif-
ferent cache blocks. In this way, they arrange the data in a
way that guarantees a certain number of cache hits. How-
ever, the same problem with unpredictable accesses will still
be present.



The focus of this paper has been to obtain tight WCET
estimations for a system with a data cache. If tight WCET
estimation is not of primary concern it may be more fruitful
to cache also unpredictable data since this probably reduces
the average execution time. Then, to make a safe estimate,
the approach taken by [5] must be adopted which means that
two miss penalties must be added for each unpredictable
access. Hence, it is possible to trade tightness of WCET
estimation for increased average performance.

6. Conclusions

In this paper, we have presented a new method for
improving the estimated worst-case performance of data
caching. Based on a definition of unpredictable data struc-
tures, our method identifies unpredictable data structures
and place them in a non-cacheable part of the memory. In
this way, only predictable accesses pass through the cache
which makes it possible to improve the WCET estimations.
In the paper, different data structures used in programs are
studied and common predictable data structures are identi-
fied.

The method, which is an extension of a state of the art
WCET method, has been experimentally evaluated in or-
der to estimate the WCET of seven benchmark programs.
The results show that all data structures in five of the seven
benchmarks are predictable. Thus, for these programs, the
cache behavior is perfectly predicted and data caching is ef-
ficiently used. In the remaining programs, all unpredictable
data structures were identified. Fortunately, the fraction of
accesses to them were low. Thus, our empirical data suggest
that data caching results in a very good worst-case perfor-
mance.

7. Acknowledgments

This research is supported by a grant from the Swedish
Research Council on Engineering Science (TFR) under
contract number 221-96-214.

References

[1] S. Basumallick and K. Nilsen. Cache issues in real-time sys-
tems. InProceedings of the ACM SIGPLAN Workshop on
Language, Compiler, and Tool Support for Real-Time Sys-
tems, June 1994.

[2] C. Ferdinand and R. Wilhelm. On predicting data cache be-
havior for real-time systems. InProceedings of ACM SIG-
PLAN Workshop on Languages, Compilers, and Tools for
Embedded Systems, pages 16–30, June 1998.

[3] C. A. Healy, D. B. Whalley, and M. G. Harmon. Integrat-
ing the timing analysis of pipelining and instruction caching.
In Proceedings of the 16th IEEE Real-Time Systems Sympo-
sium, pages 288–297, December 1995.

[4] IBM. PowerPC 403 GA user’s manual.
http://www.chips.ibm.com.

[5] S.-K. Kim, S. L. Min, and R. Ha. Efficient worst case timing
analysis of data caching. InProceedings of the 2nd IEEE
Real-Time Technology and Applications Symposium, pages
230–240, June 1996.

[6] Y.-T. S. Li, S. Malik, and A. Wolfe. Efficient microarchi-
tecture modeling and path analysis for real-time software.
In Proceedings of the 16th IEEE Real-Time Systems Sympo-
sium, pages 298–307, December 1995.

[7] Y.-T. S. Li, S. Malik, and A. Wolfe. Cache modeling for real-
time software: Beyond direct mapped instruction caches. In
Proceedings of the 17th IEEE Real-Time Systems Sympo-
sium, pages 254–263, December 1996.

[8] S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L. Min,
C. Y. Park, H. Shin, K. Park, and C. S. Kim. An accurate
worst case timing analysis technique for RISC processors.
In Proceedings of the 15th IEEE Real-Time Systems Sympo-
sium, pages 97–108, December 1994.

[9] T. Lundqvist and P. Stenström. An integrated path and tim-
ing analysis method based on cycle-level symbolic execu-
tion. Real-Time Systems, 17(2/3):183–207, November 1999.

[10] F. Mueller. Timing predictions for multi-level caches. In
Proceedings of ACM SIGPLAN Workshop on Language,
Compiler, and Tool Support for Real-Time Systems, June
1997.

[11] G. Ottosson and M. Sjödin. Worst-case execution time anal-
ysis for modern hardware architectures. InProceedings of
ACM SIGPLAN Workshop on Language, Compiler, and Tool
Support for Real-Time Systems, pages 47–55, June 1997.

[12] H. Theiling and C. Ferdinand. Combining abstract interpre-
tation and ILP for microarchitecture modelling and program
path analysis. InProceedings of the 19th IEEE Real-Time
Systems Symposium, pages 144–153, December 1998.

[13] R. T. White, F. Mueller, C. A. Healy, D. B. Whalley, and
M. G. Harmon. Timing analysis for data caches and set-
associative caches. InProceedings of the 3nd IEEE Real-
Time Technology and Applications Symposium, pages 192–
202, June 1997.


