
Empirical Bounds on Data Caching in High-
Performance Real-Time Systems

Thomas Lundqvist

Per Stenström

Technical Report 99-4

CHALMERS UNIVERSITY OF TECHNOLOGY
Department of Computer Engineering
Göteborg 1999

Empirical Bounds on Data Caching in High-Performance Real-time Systems
Thomas Lundqvist and Per Stenström

Department of Computer Engineering, Chalmers University of Technology
SE-412 96 Gothenburg, Sweden

Email: thomasl@ce.chalmers.se, URL: http://www.ce.chalmers.se/~thomasl

can be an order of magnitude longer than the best-case
execution time; in the worst-case an instruction can result
in two cache misses which can easily stall the processor
for tens of cycles. At the same time, cache memories often
handle a vast majority of all memory accesses in a single
cycle. This has motivated us to develop methods to predict
data cache behavior so as to provide tighter bounds on the
worst-case execution time.

The challenge is to determine the set of data accesses
that are independent of input data. Such memory instruc-
tions are allowed to cache data. Recently a few studies
have been published on methods to allow for predictable
data caching. The basic method in [7] handles all unpre-
dictable data accesses as if they result in two cache misses
because in the worst case, a memory instruction will miss
and replace data. If the predictable hit rate is lower than
50%, this method will produce more pessimistic results
than if data caches were not used. Our approach is instead
to let all memory accesses that are not predictable bypass
the cache. Support for this exists in most embedded micro-
processors. [6] is concerned with the problem of how to
model conflicts between predictable data cache accesses
and does not address the problem of how to handle unpre-
dictable data accesses.

Ultimately, the effectiveness of data caches in hard real-
time systems is dictated by the fraction of all memory
accesses that can be predicted, i.e., are input-data indepen-
dent. The purpose of this paper is to make an estimation of
this fraction by (1) formulating what predictable data
caching is and by (2) providing empirical data on what
fraction of data accesses that are predictable. We do this
by analyzing a set of non-trivial programs from the
SPEC95 benchmark suite. While our study is preliminary,
our empirical data so far look promising; more than 84%
of the data accesses are indeed predictable. This suggests
that data caching is effective in hard real-time systems
although the challenge is to find tractable methods to come
close to this bound. The fraction of such predictable data
accesses that can be covered by such methods establishes a
practical bound on the effectiveness. In Section 2, we pro-
vide our approach to predictable data caching. Sections 3
and 4 present the experimental results and, finally, Section
5 discusses our ongoing work.

Abstract
In this paper we study to what extent hard real-time

programs can exploit the performance potential of data
caches. Data structures that are accessed by memory
instructions whose addresses are input data independent,
can be safely cached. Based on a set of non-trivial pro-
grams from the SPEC95 benchmark suite, we find that
more than 84% of the data accesses are predictable. With
static analysis methods, it appears that a high predictable
hit rate can be obtained which can result in tighter estima-
tions of the worst-case execution time.

1. Introduction

Many time-critical real-time applications need high-per-
formance microprocessors to meet their performance
demands. When developing software for such systems, a
main problem is to verify that it meets time constraints
specified as deadlines. The industrial practice is to care-
fully estimate the worst-case execution time through
exhaustive measurements which is both time-consuming
and error-prone. This has motivated us and other research
groups [1, 2, 3, 13] to automate the task of estimating the
worst-case execution time. Our goal is to develop methods
for integration in a combined compiler/timing analysis
tool. This tool not only generates code but provides also
estimations of the worst-case execution time of a program.

The task of estimating the worst-case execution time of
a program can be formulated as a graph problem. Consider
an acyclic1 control-flow graph representation of the pro-
gram, where each vertex is a basic block of instructions or
an acyclic graph with its associated (worst-case) execution
time. The worst-case execution time is then the longest
path from the entry to the exit point. For simple microcon-
trollers with constant instruction execution times, fairly
tight worst-case execution time estimates can be derived
this way [10]. For high-performance embedded micropro-
cessors that employ pipelining and caching, however, this
methodology can provide very pessimistic estimations.
This is because the worst-case instruction execution time

1. Constraints on loop bounds, for example, must be available to
make the control flow graph acyclic.

2. Predictable Data Caching

Predicting cache behavior can typically be divided into
two steps. The first step is to find out the reference
address/addresses of all instructions. The next step is to
use this information to statically model cache behavior so
as to predict its impact on the worst-case execution time.
Such a method exists for instruction caches [4].

Recently, some methods to analyze data caches have
been proposed [6, 7]. Their approach is to extend older
methods that handle instruction caches to also handle data
caches. This works because in both cases the goal is to
statically determine the set of memory accesses for each
execution path in the program. However, one big differ-
ence is that the addresses generated from load/store
instructions to access the data cache are not always known
or predictable. A typical case is when the reference
address of a load instruction depends on unknown input
data. If the address of all accesses to the data cache are
known, it is possible to predict whether each memory
access will hit or miss in the data cache. Unknown refer-
ence addresses of a memory instruction, however, lead to
the pessimistic assumption that the memory instruction
will miss in cache and results in poor estimations of the
worst-case execution time.

Definition (Predictable memory instruction): With a pre-
dictable memory access instruction (load/store instruction)
we mean an instruction that generates the same reference
address or the same sequence of addresses, regardless of
the unknown input data, and also regardless of the path
taken through the program as long as the path includes the
instruction.2

Predictable memory instructions will put an upper-
bound on the prediction of the number of cache hits.
Unfortunately, all predictable memory instructions cannot
be determined in practice through static compiler analysis
(e.g. dataflow analysis). We will call the set of predictable
memory instructions that at the same time can be analyzed
asanalyzable memory instructions. The fraction of all exe-
cuted memory instructions that at the same time are ana-
lyzable will put a practical upper bound on the
effectiveness of data caching in hard real-time systems.

An interesting question is how good data cache predic-
tion we can get. How many of the memory accesses have
an unknown address? If we succeed to analyze all predict-

able accesses, what improvement in the form of increased
hit rate will we see?

To answer the question of how many accesses are pre-
dictable, we decided to take a look at memory accesses
from non-trivial programs and we chose the SPEC95
benchmark suite as a suitable object of study. These pro-
grams are not written specifically for real-time systems,
but are interesting due to two facts. First, they are quite big
and represent real programs doing some useful work. Sec-
ond, they are well-known in the computer architecture
community in performance evaluations and thereby suit-
able to use as a reference.

Given that we can determine the set of predictable mem-
ory instructions, the question is how this could be used to
reach a high and predictable cache hit rate. To make this
upper bound on predictability more useful, it is important
that unpredictable memory instructions do not change the
cache state. Fortunately, a hardware mechanism that per-
mits us to do this exists in most embedded microproces-
sors that use caches. We can choose if we want to cache or
not to cache each individual data accesses. As an example,
PowerPC 403 GA [8] has a double mapped memory
address space. This means that one memory location can
be reached from two addresses and we can choose differ-
ent cacheability for the two addresses, one cache-enabled
address and one cache-disabled address. Since an unpre-
dictable and predictable memory instruction may poten-
tially access the same memory location, a write-through
write policy must be chosen to avoid inconsistency.

Another solution is if the system supports virtual mem-
ory. Then cacheability is usually controlled at page level,
and we can easily arrange a similar double mapping
scheme in this case. There are two ways to exploit this. We
can either put our unpredictable data structure in a special
region in memory, marked as uncacheable, or we can con-
trol each individual load/store instruction and make it
cacheable or non-cacheable. In the latter case, we must
make sure the cache is consistent. To control the cache-
ability at a data structure level, we need to control the
mappings done by the linker. For an instruction level con-
trol one might use compiler support. Data structure control
seems a little bit simpler and we have chosen this level for
our experimental classification of memory accesses. It is
then useful to define the termunpredictable data structure.
This is a data structure (part of the memory) that is
accessed by at least one unpredictable memory access
instruction. Such data structures are not cached.

2. This means that for a fixed path through a program with only
predictable memory instructions, we will get a completely stati-
cally known sequence of reference addresses, regardless of varia-
tions in input data that still give us the same fixed path.

3. Experimental Results

3.1 Methodology

We have classified data memory accesses and determined
the fraction of accesses that goes to unpredictable data
structures. To this date we have studied two programs
from the SPEC95 suite.

The SPEC95 suite consists of 8 C-programs using inte-
ger arithmetic and 12 fortran programs using floating point
arithmetic. We have examined two programs, Compress,
an integer program, and Swim, a floating-point program.
Compress is an in-memory version of the common UNIX
utility. Swim calculates shallow water equations. Swim
was first translated from fortran to C by using f2c, a for-
tran to C translator, because the simulator we used didn’t
support fortran programs3.

To analyze the data memory accesses we ran our pro-
grams on the simulator SimICS [9]. SimICS simulates the
SPARC V8 instruction-set and emulates the SunOS 5.x
operating system. When simulating a program it delivers a
stream of memory accesses to our classification and data
cache simulation program.

We classify each memory access as one of the categories
in Table 1, depending on which type of data structure the
access refers to. We first classify each data structure used
in the program by manual inspection of the source code as
being predictable or unpredictable. This information is fed
to the classification program which registers the number of
accesses to each data structure. Since we are only inter-
ested in memory accesses originating from the application,
memory accesses from library code do not affect the statis-
tics in our simulations.

All SPEC95 programs can be run with two different
data sets, one reference data set and one test data set. The
reference data set is quite time consuming to simulate and
the test data set is usually too small for a serious analysis.
We have chosen a medium-sized data set for each of the
two programs that is not too simple and not too time con-
suming. In the end we plan to run the programs with the
full reference data set.

3.2 Compress

For compress, the results of the classification can be seen
in Figure 1. A total of 110 million memory accesses were
classified and 84% were found to be predictable.

Compress works by first filling an array with random
characters. Then, it compresses and decompresses this
array 25 times. The compression method used is a modi-
fied Lempel-Ziv (LZW), which finds common substrings
and replaces them with a variable size code. The core of
the algorithm processes one character at a time and uses it
as an index to a hash table. We regard the content of the
array (the random characters) as unknown input data, all
other parameters are fixed.

All stack accesses in compress go to scalar variables
(scalar data structures have only one possible reference
address) and are therefore predictable4. The same is valid
for most global and local data. Among the array variables,
there are 3 arrays that are unpredictable. These arrays are
used as a hash table indexed by the unknown input data.

3. The fortran libraries use unimplemented operating system
calls.

Table 1: Categories of classification

Type Explanation

Scalar, stack A single reference address to some-
thing in the stack area

Scalar, data A single reference address to a local
or global symbol

Array, data An access to an array, referenced
with a predictable series of
addresses

Unpredictable The exact reference addresses to
this data structure depends on
unknown input data

4. Even if references to the stack area are relative to some stack
pointer or frame pointer, it is still possible to statically predict
their absolute addresses.

Scalar, Data
44%

Array, Data
14%

Scalar, Stack
26%

Unpredictable
16%

Figure 1: Memory accesses from compress

Most of the predictable array accesses consist of
accesses in the form of strides. A simple loop variable is
used to index the array. The number of stack accesses is
quite high and would be even higher if run on a different
processor, due to the fact that the SPARC processor has
register windows, which are used for function parameter
passing instead of using the stack.

3.3 Swim

For Swim, the results of the classification can be seen in
Figure 2. A total of 658 million memory accesses was
classified and all accesses were found to be predictable.

Swim consists mainly of matrix calculations. Starting
from some initial values, it does the same calculation
repeatedly for a fixed number of iterations. The unknown
input data in this case would be the initial values of the
matrices. The calculations done are independent of the
actual data inside the matrices. Therefore, all accesses are
predictable.

All of the array accesses are in the form of strides. The
addresses used is a linear combination of one or two loop
index variables. The number of stack accesses is very
small. Very few local, stack allocated variables are used,
and there is enough registers to hold temporary values dur-
ing computations.

3.4 Hit Rate Measurements

We have seen that a vast majority of the data memory
accesses are predictable. If we cache these predictable
accesses, what hit rate would we achieve?

More generally speaking, we would like to know how
many of the accesses that are analyzable. This depends on
the method used and we will not try to answer that ques-

tion here, but we can still take a look on how it influences
the hit rate.

We have simulated a data cache5 and let it cache differ-
ent number of the data structures. For example, we could
guess that the scalar variables are analyzable. Then, we
cache the references to the scalar variables and do not
cache the others (i.e. all other references will count as a
cache miss) and see what the resulting hit rate becomes.
The result for Compress is seen in Figure 3 and for Swim
in Figure 4.

These diagrams tell us that if we succeed in analyzing
all predictable accesses, we will reach a fairly high hit
rate. In Compress and Swim, the predictable hit rates are

Array, Data
29%

Scalar, Stack
3%

Scalar, Data
68%

Figure 2: Memory accesses from Swim

5. The data cache was direct mapped, with a total size of 32768
bytes and a block size of 32 bytes.

25,9%

44,1%

70,0%

83,4%

95,9%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Scalars,
Stack

Scalars,
Data

Scalars,
All

Predictable All

H
it

ra
te

Figure 3: Hit rate when caching different parts of
the data accesses for compress

2,7%

68,3% 71,0%

98,3% 98,3%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Scalars,
Stack

Scalars,
Data

Scalars,
All

Predictable All

H
it

ra
te

Figure 4: Hit rate when caching different parts of
the data accesses for swim

83% and 98% (the same as the actual), respectively. The
predictable hit rates are thus close to the actual hit rates.

We can also translate these hit rates into execution
times. Let us assume a simple model for a microprocessor
with a data cache. Each instruction takes 1 cycle, a cache
hit adds no extra cycle and a cache miss will add 10 extra
cycles. For our two programs the measured relative fre-
quency of memory instructions is approximately 23%.
This simple model gives us the following relation (Figure
5).

Figure 5 tells us that if we have a hit rate of 0%, it will
take a factor of 3.3 times longer time to execute compared
to a hit rate of 100%. For Compress (83%) we get a factor
of 1.4. We have thus cut the time by more than half com-
pared to a disabled data cache.

4. Discussion

We have found that the potential of data caching based on
the two programs we have studied is high. However, to be
able to use the full potential we must find methods to ana-
lyze the predictable part of the accesses.

We have implicitly assumed that a program is run with-
out preemption. However, it is possible to use the method-
ology of classifying accesses as predictable under
preemptive scheduling policies as well given that different
processes use different partitions of the cache. This can be
achieved through software-based cache partitioning as dis-
cussed in [5]. This same technique can also be used to
allow caching of unpredictable data structures given that
they use another partition.

Another interesting question is if we can somehow do
better than the predictable limit. The answer to that is yes,
we can, but only if we have more information. With more
information about the unknown input data (converting it
into known input data maybe), we can in some cases make
unpredictable accesses into predictable. Also, more infor-

mation about the program itself (the source code or the
algorithm), maybe in the form of annotations made by a
programmer, will also surely prove useful. This and other
issues remain open questions for future research.

5. Work in progress

Currently, we are working on a method to estimate the
worst-case execution time of a program. A tool using this
method is also under construction. Our main design princi-
ple is to estimate the worst-case execution time by using
architectural simulation. This simulation must be feasible
in spite of unknown input data. To accomplish this we
have combined architectural simulation with symbolic
execution. Thus, the simulator does not only work with
real values but also with abstract values.

There are several advantages with doing a functional
and temporal simulation of a program. Firstly, we dynami-
cally resolve many dependencies present in the program
without the need for extra annotations. This may automati-
cally eliminate many false paths in the program graph.
Secondly, we can use more complex annotations, which
may be expressed with the help of variables in the program
that are known during simulation. Annotations and false-
path elimination are means to tighten the estimation on a
high level. At the same time an architectural simulator
have its strength at a low level since it can accurately
mimic the hardware of a system.

Our method is similar to a recently proposed method
[11]. However, we do not use a pure branch-and-bound
algorithm. Instead we have added a path merge strategy to
keep the complexity at a manageable level. The work done
in [12] has inspired us, but they are only focusing on the
annotation side of the problem.

In the near future we will try to analyze the Compress
application and find out how many of the predictable data
accesses are analyzable by our method. Our tool will pri-
marily handle a simple architecture with the data cache as
the only complex feature.

Acknowledgments

We are indebted to Peter Magnusson of SICS for provid-
ing us with the SimICS simulation system. This research is
supported by the Swedish Research Council for Engineer-
ing Sciences (TFR).

1

1,5

2

2,5

3

3,5

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Hit rate

E
xe

cu
tio

n
tim

e

Figure 5: Execution time as a function of hit rate

References

[1] D. B. Healy, D. B. Whalley, and M. G. Harmon "Integrat-

ing the Timing Analysis of Pipelining and Instruction

Caching" in theProceedings of the IEEE Real-Time Sys-

tems Symposium, December 1995, pages 288-297.

[2] Y Hur et al. "Worst Case Timing Analysis of RISC Pro-

cessors: R3000/R3010 Case Study" in theProceedings of

the IEEE Real-Time Systems Symposium, December

1995, pages 308-319

[3] Y. S. Li, S. Malik, and A. Wolfe "Efficient Microarchitec-

ture Modeling and Path Analysis for Real-Time Soft-

ware" in theProceedings of the IEEE Real-Time Systems

Symposium, December 1995, pages 198-307

[4] F. Mueller and D. B. Whalley "Fast Instruction Cache

Analysis via Static Cache Simulation" in theProceedings

of the 28th Annual Simulation Symposium, April 1995,

pages 105-114.

[5] F. Mueller "Compiler Support for Software-Based Cache

Partitioning" inACM SIGPLAN Workshop on Languages,

Compilers and Tools for Real-Time Systems, La Jolla,

June 1995.

[6] Y.S. Li, S. Malik, and A. Wolfe ”Cache Modeling for

Real-Time Software: Beyond Direct Mapped Instruction

Caches” in theProceedings of the IEEE Real-Time Sys-

tems Symposium, December 1996, pages 254-263.

[7] S.-K. Kim, S.L. Min, and R. Ha. ”Efficient Worst Case

Timing Analysis of Data Caching” in theProceedings of

the 2nd IEEE Real-Time Technology and Applications

Symposium, June 1996.

[8] PowerPC 403 GA Users’s Manual by IBM. See http://

www.ibm.com

[9] The SimICS simulator by SICS. See http://www.sics.se/

simics

[10] Allan C Shaw. ”Reasoning About Time in Higher-Level

Language Software” in theIEEE Transactions on Soft-

ware Engineering, 15(7): 875-889 1989.

[11] Peter Altenbernd. ”On the False Path Problem in Hard

Real-Time Programs” in theProceedings of the 8th Euro-

micro Workshop on Real-time Systems, June 1996, pages

102-107.

[12] Andreas Ermedahl and Jan Gustafsson. ”Deriving Anno-

tations for Tight Calculation of Execution Time”,

EuroPar97, August 1997 (to appear).

[13] Greger Ottosson and Mikael Sjödin. ”Worst-Case Execu-

tion Time Analysis for Modern Hardware Architectures”,

ACM SIGPLAN 1997 Workshop on Languages, Compil-

ers, and Tools for Real-Time Systems.

