
Towards a Practical WCET Analysis Approach
Based on Testing

Thomas Lundqvist
Dept. of Computer Science and Engineering

Chalmers University of Technology
SE-412 96 Göteborg, Sweden
thomas.lundqvist@chalmers.se

Patrik Sandin
Saab Space AB

SE-405 15 Göteborg, Sweden
patrik.sandin@space.se

Abstract—Analyzing the worst-case execution time, the WCET,
of a program or task is an important activity when constructing
hard real-time systems. Traditional techniques like testing and
measurements now face problems due to the introduction of cache
memories. This paper presents a new approach that enhances the
traditional testing methodology with different analysis methods.
The safeness of individual program paths are guaranteed by the
use of a safety margin. Furthermore, the approach provides help
for the tester to find the critical paths to measure. The approach
is demonstrated for a processor containing an instruction cache.
The results indicate that this promises to be a simple and practical
approach that still can result in low overestimation of the WCET.

I. I NTRODUCTION

The determination of the maximum or worst-case execution
time, WCET, of a program or task is an important prerequisite
when verifying response times in hard real-time systems [1].
Traditionally, the WCET of tasks has been estimated by the
use of measurement and testing techniques. By running a
program with different inputs while measuring the execution
time, the WCET can be estimated. A testing methodology
cannot guarantee a safe estimate, i.e., the actual WCET can
be underestimated. Nevertheless, measurements can work well
in practice since manual inspection of a program often reveal
the test cases needed to provoke the worst-case behaviour.

This testing methodology, traditionally used in industry,
is now facing problems. Increasingly, microprocessors with
cache memories are being introduced in hard real-time systems
in order to increase performance by reducing the average mem-
ory access latency. One example being the LEON processor
core [2], [3], which in its later versions contains both an in-
struction and a data cache memory. Cache memories introduce
new timing dependencies between previously unrelated parts
of the program. These dependences are often nonintuitive and
make it harder to rely on manual inspection to derive worst-
case test cases.

From a testing point of view, cache memories introduce
two new sources of uncertainties. Thefirst uncertaintyis that
the execution time of a single program path can vary even
when testing with the same input data. The reason is that the
number of cache misses depends on the initial state of the

This work has been supported by the NRFP (Swedish National Space
Board) project 53/07.

cache. This initial state can be hard to control and observe
which is fundamental in creating reliable tests. Thesecond
uncertainty is that the execution of certain program paths
can trigger conflict misses that leads to a large nonintuitive
increase in the execution time. These program paths might
not appear to be interesting from a manual inspection point of
view but may still be the paths that cause the longest execution
time due to the extra conflict misses.

To restore faith in the testing methodology, we are working
on a WCET estimation approach that complements testing
with analysis. Our approach is to attack the two sources of
cache-related uncertainties by using different analysis meth-
ods:

• Single path estimates should be made safe by adding
a safety margin to the measured WCET. Ideally, the
tightness of the margin (the overestimation) should be
controllable by being able to use a range of analysis
methods of different complexity. Then, when a large
margin might be acceptable, a simple analysis would
suffice.

• The tester should be assisted in finding untested dan-
gerous program paths. An analysis should give warning
or information about possible cache conflicts to help the
tester cover nonintuitive but important program paths.

By eliminating the two sources of uncertainties using rela-
tively simple analysis methods, we hope to restore the same
level of confidence in our WCET estimates as we had before
cache memories were introduced.

Previous research in WCET analysis [1] has produced a
rich variety of analysis approaches. Our approach shares many
ideas with other measurement-based approaches [4]–[8]. An
important difference however, is that other methods strivefor
automation in path analysis or test input generation using static
analysis methods. Our approach is to instead rely on the tester
for assuring program path coverage. This, we believe, will
result in a more simple and useful overall approach. Another
difference is that many other methods [4], [6], [8] do not
include a safety margin to guarantee safe timing analysis
leading to potentially unsafe estimates. One notable exception
is [5], where they avoid the timing analysis uncertainty by
carefully controlling the hardware. In [7], they propose an



approach similar to ours: complementing measurement with
analysis to establish that major uncertainties are covered.
However, their method relies on more complex probabilistic
calculations. We simply use the measured execution time plus
a safety margin for obtaining a WCET estimate.

The goal of our approach is to create a range of analysis
methods for handling both instruction and data caches. Since
this is work in progress, the purpose of this paper is to
present the basic ideas. To illustrate these ideas, a simple
processor architecture containing an instruction cache will be
used. In the next section (Section II), we introduce a small
example program to illustrate the two sources of uncertainty
when trying to measure the WCET during testing. Then, in
Section III and IV we explain how our approach can help to
restore confidence in the measured WCET estimates.

II. T ESTING AND CACHE MEMORIES

To illustrate the problem with testing we will now only focus
on instruction caching and use the example program in Fig. 1.
This program consists of a functiona(), which calls three
other functions:b(), c(), andbig(). The input data toa()
is the boolean variables:x and special, and the boolean
vector:v[]. These input variables control which program path
is going to be executed and thereby which instructions get
fetched via the instruction cache.

For our example we assume that the program is run on
an idealized processor with pipelined instruction execution
and a direct-mapped, 16 KiB instruction cache and no data
cache. Each machine instruction executes with a constant,
fixed latency in the pipeline. A cache miss stalls the execution
by a fixed cache miss penalty of 5 clock cycles. All data
defining the instruction cache can be found in Fig. 2. This
figure also shows how the linker has placed the functions in
memory and how big each function is in terms of memory
(cache) blocks. An important observation for our example is
that the two functionsb() andc() map to the same location
in the instruction cache. This is a potential source of cache
conflict misses as we will see later.

We will now look at what happens when we measure the
execution time of this program by testing different input data.
Table I shows how the real execution time varies depending on
the input we use. For example, test case 1 makes the program
call functionb() before the loop is entered as well as inside
each loop iteration. The real execution time varies between
4140 clock cycles and 4210 clock cycles due tocold missesin
the instruction cache. If the cache already contains the needed
memory blocks in the beginning of the execution we get 4140
clock cycles. If the cache is empty, we get 4210 clock cycles.

Table I also illustrates how a tester might proceed when
trying to estimate the WCET of functiona(). We assume
that during and between measurements we have no control
over the cache content. Our measurements will therefore end
up anywhere in the range given by the real execution time.
For the WCET estimation, the loop is the natural starting point
since programs often spend most of their time in loops. The
first two test cases, 1 and 2, cover the two different alternatives

1 void a(x, v[], special)
2 if (x)
3 b()
4 else
5 c()
6 if (not special)
7 for (i = 0 ; i < N ; i++)
8 if (v[i])
9 b()

10 else
11 c()
12 else
13 big()

Fig. 1. The example C program. The functiona() is shown. This function
calls three other functions:b(), c(), and big(). The boolean input
variablesx, v[], andspecial control the execution path.

Instruction
cache

Size: 4 KiB
Block size: 16 B
Direct mapped

Cache miss
penalty: 5 cycles

0x000 tag[0] a()

0x200 b() and c()

0x800 big()

0xff0

tag[1]

tag[32]
tag[33]

tag[128]
tag[129]

tag[255]
tag[254]

Function Address Cache address # of blocks
a() 0x0000-0x009f 0x000 10
b() 0x0200-0x023f 0x200 4
c() 0x1200-0x124f 0x200 5
big() 0x1800-0x1bff 0x800 64

Fig. 2. Instruction cache configuration and placement of functions. Each
block in the cache has a tag identifying the memory block currently cached.
The functions map to different locations in the cache depending on their
memory address. The blocks fromb() andc() might conflict in the cache.

inside the loop: callingb() or callingc(). The tester would
find thatc() has a longer execution time and would maybe
continue with the additional test cases, 3 and 4, to cover the
other obvious program paths. The final estimate of the WCET
would become 5200 clock cycles (test case 3).

In this testing example, the WCET was underestimated due
to two reasons. First, we did not know how the real execution
time varies for the program paths we measured and even if we
run the same test case multiple times, we cannot know if we

TABLE I
TEST-CASES USED WHEN ESTIMATING THEWCET OF THE EXAMPLE

PROGRAM IN FIG. 1. THE NUMBER OF LOOP ITERATIONS ISN = 100.

Test Real exe- Measure-
case x v[] special cution time ment

1 true true∀i false 4140–4210 4154
2 true false∀i false 5160–5235 5177
3 false false∀i false 5150–5225 5200
4 false false∀i true 650–1045 655

(5) false alternating false 6650–6725
true–false



have covered the whole range. For example, among the four
paths tested, the estimated WCET should have been 5235 not
5200. The other reason for underestimating the WCET is that
we failed to test the dangerous program path represented by
test case 5 in Table I. This test case causesb() andc() to
be called in an alternating way so that 4 extraconflict misses
occur in each iteration. Testing this path would have given an
estimate closer to the real WCET of 6725 clock cycles.

III. SAFETY MARGIN METHODS FOR INSTRUCTION

CACHES

In the previous section we found that the WCET was
underestimated due to two reasons. First, the execution time
of a single path could vary due to the undefined initial cache
content. The second reason was that a critical program path
was not tested. We will now see on how our approach can
handle these problems. In this section, we will take a look
on methods to handle the varying execution times. In the next
section (Section IV), we will present methods to help with the
second problem, finding critical untested paths.

To obtain a safe WCET estimate for a single program path
despite the variations possible due to the undefined initial
cache state, we add a safety margin to our measurements. This
safety margin should ideally be as small as possible to reduce
the overestimation. Still, we want to have a range of methods
available so that less complex methods can be used when
some overestimation can be tolerated. This section presents
three such methods: the constant bound method, and the
dynamic and static cache footprint methods. We demonstrate
these methods using the example program and the direct-
mapped example system from Section II. However, the same
approach also handles set-associative instruction cacheswith
LRU (Least Recently Used) replacement.

To be able to calculate a safety margin we need to be able to
reason about how the initial cache state can influence the future
execution time. An important requirement on the processor
architecture is that the effect of a change in the initial cache
state has a constant, fixed penalty on the future execution time.
Another way of expressing this is that a change in the initial
timing state in the system has a bounded timing effect [9]. In
our example system this requirement is fulfilled. For example,
we know that an invalidation of a cache block can cause at
most 5 clock cycles penalty on the future execution time. This
makes it possible to calculate a safety margin based on the
number of initially undefined cache blocks as:

margin= B ∗ P

where B is an upper bound on the number of undefined
initial cache blocks andP is the cache miss penalty. The
worst-case assumption here is that during measurements, the
cache might contain useful blocks so that fewer cold misses
occur compared to the possible run-time behaviour. The safety
margin compensates for this risk.

To calculate the margin we need to find an upper bound
on the number of undefined cache blocksB. We now present
three different methods to estimate this upper bound.

A. The constant bound method

The constant bound method represents the most simple
approach. Here, we simply assume that all cache blocks in
the cache are undefined and potentially used by the program:

B = total number of cache blocks

For our example in Section II we getB = 256 and a margin
of 256 × 5 = 1280 clock cycles.

If the overestimation can be tolerated, this method has
important advantages. The margin calculated isprogram in-
dependent. Thus, no analysis of the program is needed. Also,
for programs larger than the cache size, this method gives the
best estimate.

B. Dynamic cache footprint method

The next method, the dynamic cache footprint method, has
the potential of reducing the overestimation by limitingB to
the actual number of blocks touched when executing a certain
program path. This method relies on collecting instruction
fetch trace data during testing and requires hardware or
simulator support. Mapping trace data to memory locations
then reveals how many cache blocks that are touched for a
certain program path:

B(p) = touched blocks for pathp

This results in the lowest possible overestimation since
it calculates an individual safety margin for each measured
program path (test case). For example, for test case 5 in our
previous example we would find that the number of touched
blocks isB(5) = 15 and the margin would become15x5 = 75
clock cycles, exactly covering the real variation in execution
time.

C. Static cache footprint method

The static cache footprint method simplifies the dynamic
version by relying on information from the linker instead.
Knowing the placement and size of functions in memory,
the total number of blocks occupied by the program can be
calculated:

B = total program footprint in cache

This will typically produce a boundB larger than what the
dynamic method does. For our example,B = 79, and the
margin is79 × 5 = 395 clock cycles. One advantage is that
the same margin can be used for all measured paths.

D. Discussion

The possible WCET overestimation resulting from the dif-
ferent safety margin methods is listed in Table II. The over-
estimation varies since the measured execution times varies.
Thus, we could do multiple measurements and pick the lowest
one to reduce the overestimation. For our example program,
the dynamic cache footprint method gives the lowest overesti-
mation. However, if we increase the number of loop iterations
to N = 1000, all methods result in low overestimation.



TABLE II
THE WCET OVERESTIMATION BY THE DIFFERENT SAFETY MARGIN

METHODS FOR TWO DIFFERENT VALUES OFN , THE NUMBER OF LOOP

ITERATIONS IN THE EXAMPLE PROGRAM.

Method Margin Overestimation
N = 100 N = 1000

Constant bound 1280 17.9%–19.0% 1.8%–1.9%
Dynamic cache footprint 75 0.0%–1.1% 0.0%–0.1%
Static cache footprint 395 4.8%–5.9% 0.5%–0.6%

The safety-margin methods can also be used in combination
with hardware control strategies. For example, by adopting
some of the techniques mentioned in [5], like cache flushing
or locking, the execution time variation can be completely or
partly eliminated. This would also reduce the safety margin
thus allowing for a trade-off between hardware control, anal-
ysis complexity, and overestimation.

IV. T EST COVERAGE WARNING METHODS FOR

INSTRUCTION CACHES

The safety margin methods only guarantees a safe WCET
estimate for individual program paths. For path analysis, we
rely on the tester to provide sufficient coverage. This can be
easy if the program only contains a single path. However,
given multiple paths, we want to give the tester information
or warnings about possible conflict misses in the program to
help the tester cover dangerous paths.

The approach taken is to rely on the linker to provide
placement and size information about all functions in the
program. The program memory regions can then simply be
mapped to cache regions to indentify conflicting areas. For
example, in our previous example, such an analysis would
quickly reveal that 4 memory blocks inb() andc() map to
conflicting regions.

Given information about conflicting regions in the code, the
tester proceeds to assess the risk:

• If a path exists through the program that passes through
conflicting regions in a repeatable and alternating way,
that path should be tested. Alternating between two
different regions could trigger conflict misses and if these
regions are inside a loop it could cause a large increase
in execution time.

• When inspecting different paths, the worst-case path
found so far should be prioritized to see if it conflicts
with some other region. Conflicts with the worst-case
path have a great potential of causing an increase in the
WCET.

Following these steps, a tester should have had no difficul-
ties in finding test case 5 in our previous example.

Given the information about conflicts, there is also another
important option. Since conflict misses are unwanted also
when striving for good average performance, it can be of
interest to control the linking phase in order to avoid conflicts.
This can be difficult for a direct-mapped cache but it can be
an important option for set-associative caches.

V. D ISCUSSION AND FUTURE WORK

Our approach is to let the tester be responsible for finding
critical paths and thereby obtaining safe WCET estimates.
This simplifies the analysis needed and should work well for
programs with few program paths to test. However, further
studies are needed of more realistic programs and benchmarks
to assess the general applicability of this approach.

In the previous sections we have demonstrated our approach
for direct-mapped instruction caches. However, this studyis
part of an ongoing project that aims to develop a full set of
methods to handle WCET analysis for the LEON processor
core [2], [3]. Thus, we need to handle both instruction and data
caches, which also are set-associative with LRU replacement.
Apart from the WCET analysis we should also be able to
estimate the effect of caches when doing a response-time
analysis of tasks that use preemptive scheduling.

Another important goal is to be able to support regression
testing. Here, we believe a successful approach will be to sup-
port the tester with information about the impact of program
changes by highlighting differences in margin calculations and
conflicting program regions between test runs.

VI. CONCLUSION

In this paper we have presented ideas for a new approach
to WCET analysis. Based on testing and the measuring of
critical program paths we add a safety margin to the mea-
sured execution times to obtain safe WCET estimates. The
methods presented are fairly simple but can still lead to low
overestimation of the WCET. Further studies are needed to
confirm the general applicability of the approach.

REFERENCES

[1] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström, “The worst-case execution
time problem—overview of methods and survey of tools,”ACM Trans-
actions on Embedded Computing Systems (TECS), vol. 7, no. 3, Apr.
2008.

[2] ESA Microelectronics, “LEON2-FT IP core,”
http://www.esa.int/TEC/Microelectronics.

[3] Gaisler Research, “LEON processor cores,” http://www.gaisler.com.
[4] I. Wenzel, R. Kirner, B. Rieder, and P. Puschner, “Measurement-based

worst-case execution time analysis,” inThird IEEE Workshop on Software
Technologies for Future Embedded and Ubiquitous Systems, 2005. SEUS
2005, 2005, pp. 7–10.

[5] J.-F. Deverge and I. Puaut, “Safe measurement-based wcet estimation,”
in 5th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis,
R. Wilhelm, Ed., Dagstuhl, Germany, 2007.

[6] G. Bernat, A. Colin, and S. M. Petters, “Wcet analysis of probabilistic
hard real-time systems,” inProceedings of the 23th IEEE Real-Time
Systems Symposium (RTSS’02), 2002, p. 279.

[7] S. M. Petters, P. Zadarnowski, and G. Heiser, “Measurements or static
analysis or both?” in7th Intl. Workshop on Worst-Case Execution Time
(WCET) Analysis, C. Rochange, Ed., Schloss Dagstuhl, Germany, 2007.

[8] M. Lindgren, H. Hansson, and H. Thane, “Using measurements to derive
the worst-case execution time,” inProceedings of the Seventh Interna-
tional Conference on Real-Time Systems and Applications (RTCSA’00),
2000, p. 15.

[9] T. Lundqvist, “A wcet analysis method for pipelined microprocessors with
cache memories,” Ph.D. dissertation, Chalmers Universityof Technology,
Göteborg, Sweden, June 2002.


