Towards a Practical WCET Analysis Approach
Based on Testing

Patrik Sandin
Saab Space AB
SE-405 15 Goteborg, Sweden
patrik.sandin@space.se

Thomas Lundqvist
Dept. of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Goteborg, Sweden
thomas.lundqgvist@chalmers.se

Abstract—Analyzing the worst-case execution time, the WCET, cache. This initial state can be hard to control and observe
of a program or task is an important activity when constructing which is fundamental in creating reliable tests. Téezond

hard real-time systems. Traditional techniques like testig and
measurements now face problems due to the introduction of che
memories. This paper presents a new approach that enhancelset
traditional testing methodology with different analysis methods.
The safeness of individual program paths are guaranteed byhe
use of a safety margin. Furthermore, the approach provides &lp
for the tester to find the critical paths to measure. The apprach
is demonstrated for a processor containing an instruction ache.
The results indicate that this promises to be a simple and pretical
approach that still can result in low overestimation of the WCET.

I. INTRODUCTION

uncertainty is that the execution of certain program paths
can trigger conflict misses that leads to a large nonintiitiv
increase in the execution time. These program paths might
not appear to be interesting from a manual inspection pdint o
view but may still be the paths that cause the longest exatuti
time due to the extra conflict misses.

To restore faith in the testing methodology, we are working
on a WCET estimation approach that complements testing
with analysis. Our approach is to attack the two sources of
cache-related uncertainties by using different analysihm
ods:

The determination of the maximum or worst-case execution
time, WCET, of a program or task is an important prerequisite ®
when verifying response times in hard real-time systems [1]
Traditionally, the WCET of tasks has been estimated by the
use of measurement and testing techniques. By running a
program with different inputs while measuring the exeautio
time, the WCET can be estimated. A testing methodology
cannot guarantee a safe estimate, i.e., the actual WCET can
be underestimated. Nevertheless, measurements can wibrk we
in practice since manual inspection of a program often fevea

Single path estimates should be made safe by adding
a safety margin to the measured WCET. Ideally, the

tightness of the margin (the overestimation) should be
controllable by being able to use a range of analysis
methods of different complexity. Then, when a large

margin might be acceptable, a simple analysis would
suffice.

The tester should be assisted in finding untested dan-
gerous program paths. An analysis should give warning

the test cases needed to provoke the worst-case behaviour. ~ ©F information about possible cache conflicts to help the
This testing methodology, traditionally used in industry, tester cover nonintuitive but important program paths.
is now facing problems. Increasingly, microprocessorshwit By eliminating the two sources of uncertainties using rela-
cache memories are being introduced in hard real-timemgstetively simple analysis methods, we hope to restore the same
in order to increase performance by reducing the average-magvel of confidence in our WCET estimates as we had before
ory access latency. One example being the LEON procesggehe memories were introduced.
core [2], [3], which in its later versions contains b.oth_an i previous research in WCET analysis [1] has produced a
struction and a data cache memory. Cache memories introdyeg variety of analysis approaches. Our approach sharey ma
new timing dependencies between previously unrelated pafeas with other measurement-based approaches [4]-[8]. An
of the program. These dependences are often nonintuitte §yportant difference however, is that other methods stidre
make it harder to rely on manual inspection to derive Worsky,tomation in path analysis or test input generation usimics
case test cases. _ _ o analysis methods. Our approach is to instead rely on thertest
From a testing point of view, cache memories introdugg; assuring program path coverage. This, we believe, will
two new sources of uncertainties. Thest uncertaintyis that egyit in a more simple and useful overall approach. Another
the execu_tion t_ime of a single program path can vary eVefiterence is that many other methods [4], [6], [8] do not
when testing with the same input data. The reason is that {igjyde a safety margin to guarantee safe timing analysis
number of cache misses depends on the initial state of {@gding to potentially unsafe estimates. One notable aiep

This work has been supported by the NRFP (Swedish NationakeSp is [5]' where the_y avoid the timing analysis uncertainty by
Board) project 53/07. carefully controlling the hardware. In [7], they propose an

o . . . void a(x, v[], special)
approach similar to ours: complementing measurement wit it (x)
analysis to establish that major uncertainties are covered b()
However, their method relies on more complex probabilistics el se

calculations. We simply use the measured execution time p|L5
a safety margin for obtaining a WCET estimate.

c()
if (not special)

for (i =0 ; i <N; i++)
The goal of our approach is to create a range of analy5|§ if (v[i])
methods for handling both instruction and data caches.eSing b()
this is work in progress, the purpose of this paper is t0 el se
present the basic ideas. To illustrate these ideas, a smfﬂe c()
processor architecture containing an instruction cachiebei el Sgi a0)

used. In the next section (Section II), we introduce a smeﬁ?
example program to illustrate the two sources of uncestaint. o . .

h trvi t the WCET during testing. Then Fig. 1. The example C program. The functiaf) is shown. This function
when trying to measure the uring tesung. Then, Wis three other functionsb(), c(), and bi g(). The boolean input
Section IlIl and IV we explain how our approach can help tariablesx, v[], andspeci al control the execution path.

restore confidence in the measured WCET estimates.

Instruction 0x000 tag[0] = a()
Il. TESTING AND CACHE MEMORIES cache tag[1]

To illustrate the problem with testing we will now only focus Size: 4 KiB i b0 and
on instruction caching and use the example program in Fig. Lplock size: 16 B~ °2°° e y 0 and c0
This program consists of a functica() , which calls three Direct mapped ‘
pther functionsb() _,c() ,andbi g() . The input data ta() Cache miss 0x800 | Tag[iZ8] big()
is the boolean variablex and speci al , and the boolean naliv: 5 ovel tag[129)
vector:v[] . These input variables control which program path penally: > cycles
is going to be executed and thereby which instructions get tag[254]
fetched via the instruction cache. OXIO [tagl255]

FF’r OW example we as_sumg that th_e progr.am IS run.on Function Address Cache address # of blocks
an idealized processor with pipelined instruction exemuti 3 0x0000-0x000fF _ 0x000 10
and a direct-mapped, 16 KiB instruction cache and no data b() 0x0200-0x023f 0x200 4
cache. Each machine instruction executes with a constant, C() 0x1200-0x124f ~ 0x200 5
fixed latency in the pipeline. A cache miss stalls the exeouti _Pi 90) 0x1800-Ox1bff 0x800 64

by a fixed cache miss penalty of 5 clock cycles. All datgig. 2. Instruction cache configuration and placement ottions. Each
defining the instruction cache can be found in Fig. 2. Th{¥ock in the cache has a tag identifying the memory blockently cached.
. . . The functions map to different locations in the cache dem_mnbn their
figure also shows how the linker has placed the functions #tmory address. The blocks fromf) andc() might conflict in the cache.
memory and how big each function is in terms of memory

(cache) blocks. An important observation for our example is

that the two function®() andc() map to the same locationinside the loop: calling () or callingc() . The tester would

in the instruction cache. This is a potential source of cacifid thatc() has a longer execution time and would maybe

conflict misses as we will see later. continue with the additional test cases, 3 and 4, to cover the
We will now look at what happens when we measure thgther obvious program paths. The final estimate of the WCET

execution time of this program by testing different inputada would become 5200 clock cycles (test case 3).

Table | shows how the real execution time varies depending onp, this testing example, the WCET was underestimated due

the input we use. For example, test case 1 makes the proggniwo reasons. First, we did not know how the real execution

call functionb() before the loop is entered as well as insidgme varies for the program paths we measured and even if we

each loop iteration. The real execution time varies betwegfh the same test case multiple times, we cannot know if we
4140 clock cycles and 4210 clock cycles duedtd missesn

the instruction cache. If the cache already contains thdatte
memory blocks in the beginning of the execution we get 4140 TABLE |
. TEST-CASES USED WHEN ESTIMATING THEWCET OF THE EXAMPLE
clock cycles. If the cache is empty, we get 4210 clock cycles.procram INFIG. 1. THE NUMBER OF LOOP ITERATIONS ISV = 100.
Table | also illustrates how a tester might proceed when

trying to estimate the WCET of functioa(). We assume 'est . Real exe- Measure-
,case X v[] speci al cution time ment

that during and between measurements we have no contret—ue truevs false AT40—2510 154

over the cache content. Our measurements will therefore end 2 true falsevi false 5160-5235 5177

up anywhere in the range given by the real execution time. 3 false falsevi false 5150-5225 5200
. . ; . . false falsevi true 650-1045 655

For the WCET estimation, the loop is the natural startingnpoi

since programs often spend most of their time in loops. The (5) false alternating false 6650-6725

first two test cases, 1 and 2, cover the two different alteresit true—false

have covered the whole range. For example, among the féur The constant bound method
paths tested, the estimated WCET should have been 5235 notne constant bound method represents the most simple

5200. The other reason for underestimating the WCET is tr}ﬁ;pmach_ Here, we simply assume that all cache blocks in

we failed to test the dangerous program path representediy cache are undefined and potentially used by the program:
test case 5 in Table I. This test case causgs andc() to

be called in an alternating way so that 4 extanflict misses B = total number of cache blocks
occur in each iteration. Testing this path would have given a

estimate closer to the real WCET of 6725 clock cycles. For our example in Section Il we gét = 256 and a margin

of 256 x 5 = 1280 clock cycles.
Ill. SAFETY MARGIN METHODS FOR INSTRUCTION If the overestimation can be tolerated, this method has
CACHES important advantages. The margin calculategbrisgram in-

In the previous section we found that the WCET wagéependentThus, no analysis of the program is needed. Also,
underestimated due to two reasons. First, the executiom tifer programs larger than the cache size, this method giwes th
of a single path could vary due to the undefined initial cactest estimate.
content. The second reason was that a critical program p%th
was not tested. We will now see on how our approach can
handle these problems. In this section, we will take a look The next method, the dynamic cache footprint method, has
on methods to handle the varying execution times. In the ndRe potential of reducing the overestimation by limitiyto
section (Section 1V), we will present methods to help wita ththe actual number of blocks touched when executing a certain
second problem, finding critical untested paths. program path. This method relies on collecting instruction

To obtain a safe WCET estimate for a single program paf@tch trace data during testing and requires hardware or
despite the variations possible due to the undefined initRimulator support. Mapping trace data to memory locations
cache state, we add a safety margin to our measurements. 1@ reveals how many cache blocks that are touched for a
safety margin should ideally be as small as possible to eedf@rtain program path:
the overestimation. Still, we want to have a range of methods
available so that less complex methods can be used when
some overestimation can be tolerated. This section presentThis results in the lowest possible overestimation since
three such methods: the constant bound method, and #healculates an individual safety margin for each measured
dynamic and static cache footprint methods. We demonstrai@gram path (test case). For example, for test case 5 in our
these methods using the example program and the dirggievious example we would find that the number of touched
mapped example system from Section Il. However, the sa@cks isB(5) = 15 and the margin would becoméz5 = 75

approach also handles set-associative instruction cashles clock cycles, exactly covering the real variation in exémut
LRU (Least Recently Used) replacement. time.

To be able to calculate a safety margin we need to be able to
reason about how the initial cache state can influence thesfutC. Static cache footprint method
execution time. An important requirement on the processorThe static cache footprint method simplifies the dynamic
architecture is that the effect of a change in the initialngac version by relying on information from the linker instead.
state has a constant, fixed penalty on the future executien ti Knowing the placement and size of functions in memory,
Another way of expressing this is that a change in the initighe total number of blocks occupied by the program can be
timing state in the system has a bounded timing effect [9]. nlculated:
our example system this requirement is fulfilled. For exampl o
we know that an invalidation of a cache block can cause at B = total program footprint in cache

most 5 clock cycles penalty on the future execution timesThi s will typically produce a bound larger than what the

makes it possible to calculate a safety margin based on %amic method does. For our example,= 79, and the
number of initially undefined cache blocks as: margin is79 x 5 = 395 clock cycles. One advantage is that
the same margin can be used for all measured paths.

Dynamic cache footprint method

B(p) = touched blocks for pathp

margin= B x P

where B is an upper bound on the number of undefineld: Discussion
initial cache blocks andP is the cache miss penalty. The The possible WCET overestimation resulting from the dif-
worst-case assumption here is that during measuremenets, férent safety margin methods is listed in Table Il. The over-
cache might contain useful blocks so that fewer cold missestimation varies since the measured execution timessvarie
occur compared to the possible run-time behaviour. Theysaf@hus, we could do multiple measurements and pick the lowest
margin compensates for this risk. one to reduce the overestimation. For our example program,
To calculate the margin we need to find an upper bouride dynamic cache footprint method gives the lowest ovierest
on the number of undefined cache blodksWe now present mation. However, if we increase the number of loop iteration
three different methods to estimate this upper bound. to N = 1000, all methods result in low overestimation.

TABLE Il

THE WCET OVERESTIMATION BY THE DIFFERENT SAFETY MARGIN V. DISCUSSION AND FUTURE WORK
METHODS FOR TWO DIFFERENT VALUES ORV, THE NUMBER OF LOOP Our approach is to let the tester be responsible for finding
ITERATIONS IN THE EXAMPLE PROGRAM . . .
critical paths and thereby obtaining safe WCET estimates.
Method Margin _ Overestimation This simplifies the analysis needed and should work well for
N =100 __ N = 1000 programs with few program paths to test. However, further
Constant bound 1280 17.9%-19.0% 1.8%-1.9% - L
Dynamic cache footprint 75 0.0%-11% 00%-01% Studies are needed of more realistic programs and bencemark
Static cache footprint 395 4.8%-59% 0.5%-0.6% t0 assess the general applicability of this approach.

In the previous sections we have demonstrated our approach
for direct-mapped instruction caches. However, this stisdy

The safety-margin methods can also be used in combinati@t of an ongoing project that aims to develop a full set of
with hardware control strategies. For example, by adoptifigethods to handle WCET analysis for the LEON processor
some of the techniques mentioned in [5], like cache flushig@re [2], [3]. Thus, we need to handle both instruction artd da
or locking, the execution time variation can be completely #aches, which also are set-associative with LRU replacemen
partly eliminated. This would also reduce the safety margfart from the WCET analysis we should also be able to
thus allowing for a trade-off between hardware control lanestimate the effect of caches when doing a response-time

ysis complexity, and overestimation. analysis of tasks that use preemptive scheduling.
Another important goal is to be able to support regression
IV. TEST COVERAGE WARNING METHODS FOR testing. Here, we believe a successful approach will be pe su
INSTRUCTION CACHES port the tester with information about the impact of program

changes by highlighting differences in margin calculagiand
The safety margin methods only guarantees a safe WCEdnflicting program regions between test runs.
estimate for individual program paths. For path analysis, w
rely on the tester to provide sufficient coverage. This can be
easy if the program only contains a single path. However, In this paper we have presented ideas for a new approach
given multiple paths, we want to give the tester informatioi® WCET analysis. Based on testing and the measuring of
or warnings about possible conflict misses in the program estical program paths we add a safety margin to the mea-
help the tester cover dangerous paths. sured execution times to obtain safe WCET estimates. The
The approach taken is to rely on the linker to providgethods presented are fairly simple but can still lead to low
placement and size information about all functions in theverestimation of the WCET. Further studies are needed to
program. The program memory regions can then simply §enfirm the general applicability of the approach.
mapped t(_) cache regions to indentify conflicting areas. For REFERENCES
example, in our previous example, such an analysis would

: [1] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. ThegiD. Whalley,
qUICkIy reveal that 4 memory blocks hl‘() andc() map to G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. MuellerPuaut,

conflicting regions. P. Puschner, J. Staschulat, and P. Stenstrom, “The wasst-execution

Given information about conflicting regions in the code, the time problem—overview of methods and survey of toolsCM Trans-

. actions on Embedded Computing Systems (TE€@&) 7, no. 3, Apr.
tester proceeds to assess the risk: 2008.

« If a path exists through the program that passes through ESA Microelectronics, ‘LEON2-FT P core,’

flicti . . tabl d alt ti http://www.esa.int/ TEC/Microelectronics.
conilicting regions In a repeatable and altérnating W%] Gaisler Research, “LEON processor cores,” http://wgaisler.com.

that path should be tested. Alternating between twa I. Wenzel, R. Kirner, B. Rieder, and P. Puschner, “Measuent-based

different regions could trigger conflict misses and if these Worst-case execution time analysis, Third IEEE Workshop on Software
. insid | - Id | . Technologies for Future Embedded and Ubiquitous Systed@s. SEUS
regions are inside a loop it could cause a large increase 505 2005, pp. 7-10.

in execution time. [5] J.-F. Deverge and I. Puaut, “Safe measurement-basetl estienation,”

« When inspecting different paths, the worst-case path in Sth Intl. Workshop on Worst-Case Execution Time (WCET) yasigl
found far should be prioritized to see if it conflict R. Wilhelm, Ed., Dagstuhl, Germany, 2007.
o.un SO) p)) ?6] G. Bernat, A. Colin, and S. M. Petters, “Wcet analysis obtbilistic
with some other region. Conflicts with the worst-case hard real-time systems,” ifProceedings of the 23th IEEE Real-Time

path have a great potential of causing an increase in t[r71]e Systems Symposium (RTSS'@)02, p. 279.

VI. CONCLUSION

WCET S. M. Petters, P. Zadarnowski, and G. Heiser, “Measurgmer static
: analysis or both?” ir7th Intl. Workshop on Worst-Case Execution Time

; i~ (WCET) AnalysisC. Rochange, Ed., Schloss Dagstuhl, Germany, 2007.
Following these steps, a tester should have had no dlfflctg] M. Lindgren, H. Hansson, and H. Thane, “Using measuramenderive

ties in finding test case 5 in our previous example. the worst-case execution time,” Proceedings of the Seventh Interna-
Given the information about conflicts, there is also another tzigggl Coggerence on Real-Time Systems and ApplicatioC&A'00)

Important. pptlon. Since conflict misses are unwanted al T. LUIil(?qViSt, “A wcet analysis method for pipelined mégrocessors with

when striving for good average performance, it can be Of cache memories,” Ph.D. dissertation, Chalmers Univedsiffechnology,

interest to control the linking phase in order to avoid caoisli Goteborg, Sweden, June 2002.

This can be difficult for a direct-mapped cache but it can be

an important option for set-associative caches.

