Integrating Path and Timing Analysis
using Instruction-Level Simulation Techniques

Thomas Lundqvist and Per Stenstréom

Department of Computer Engineering
Chalmers University of Technology
SE-412 96 Goteborg, Sweden

{thomasl,pers}@ce.chalmers.se

Abstract. Previously published methods for estimation of the worst-
case execution time on contemporary processors with complex pipelines
and multi-level memory hierarchies result in overestimations owing to in-
sufficient path and/or timing analysis. This paper presents a new method
that integrates path and timing analysis to address these limitations.
First, it is based on instruction-level architecture simulation techniques
and thus has a potential to perform arbitrarily detailed timing analysis
of hardware platforms. Second, by extending the simulation technique
with the capability of handling unknown input data values, it is possible
to exclude infeasible (or false) program paths in many cases, and also
calculate path information, such as bounds on number of loop iterations,
without the need for annotating the programs. Finally, in order to keep
the number of program paths to be analyzed at a manageable level, we
have extended the simulator with a path-merging strategy. This paper
presents the method and particularly evaluates its capability to exclude
infeasible paths based on seven benchmark programs.

1 Introduction

Static estimation of the worst-case execution time (WCET) has been identified as
an important problem in the design of systems for time-critical applications. One
reason is that most task scheduling techniques assume that such estimations are
known before run-time to schedule the application tasks so that imposed timing
constraints, e.g. deadlines, are met at run-time.

The WCET of a program is defined by the program path that takes the
longest time to execute regardless of input data and initial system state. Ideally,
a WCET estimation method should take as input a program and estimate a
tight upper-bound on the actual WCET for a given hardware platform. There
are two important sources to overestimations of the WCET. First, the estimation
technique may encounter program paths that can never be executed regardless of
the input data, usually referred to as infeasible (or false) program paths. Second,
the timing model of the hardware platform may introduce pessimism because of
simplifying timing assumptions.

The first problem can be addressed by requiring that the programmer pro-
vides path annotations [14] which clearly is both time-consuming and error-
prone. A more attractive method is to automatically detect infeasible paths
through static path analysis methods [1,3]. As for the second problem, several
timing analysis approaches have been proposed that statically estimate the ex-
ecution time of a given path by taking into account the effects of, e.g., pipeline
stalls and cache misses [5, 7-10, 13, 16]. Unfortunately, since these timing analysis
approaches typically charge fixed penalties caused by cache misses and pipeline
hazards, they have difficulties to take into account the timing effect of dynamic
interactions such as resource contention in the hardware platforms caused by
buffering of instructions and memory requests. More seriously, no study has
shown how timing analysis methods can be integrated with path analysis meth-
ods to relieve the programmer from the burden of identifying and excluding
infeasible paths from the analysis.

In this paper we present a new approach to WCET estimation that integrates
path analysis with accurate timing analysis. Our WCET estimation method
achieves this goal by (1) using instruction-level simulation techniques [12,17]
that conceptually simulate all feasible paths on arbitrarily detailed timing models
of the hardware platform; (2) by reducing the number of infeasible paths by
extending architectural simulation techniques to handle unknown input data;
and (3) by calculating, e.g., bounds on number of loop iterations with no need
for making annotations for statically known bounds.

A practical limitation of the method in its basic form is that the number
of paths to simulate can easily be prohibitive, especially in loop constructs. We
have therefore extended the architecture simulation method with a path-merging
approach that manages to bound the number of simulated paths in a loop to
just a few paths. This merging strategy reduces the number of simulated paths
drastically and makes the approach useful for realistically sized programs. We
outline how the method can be applied to pipelined processors with instruc-
tion and data caches and present how the merging strategy is implemented to
encounter the worst-case effects of these features.

The next three sections are devoted to describing our method focusing on
the basic simulation approach in Section 2, the WCET algorithm in Section 3
and how detailed timing models of architectural features are integrated into the
method in Section 4. An evaluation of the method focusing on the path analysis
of seven test programs is presented in Section 5. In Section 6, we discuss the
potential of the method along with its weaknesses in the context of previous
work in this area before we conclude in Section 7.

2 The Approach

Consider programs for which the WCET is statically decidable; i.e., all possi-
ble execution paths in the program are finite in length. For example, bounds on
number of iterations in loops are known before run-time, although they might be
difficult to determine due to limitations in compiler analysis methods. Second,

for the time being, we will consider processors with fixed instruction execution
times although our method is applicable to arbitrary complex processor archi-
tectures with associated memory hierarchies which we show in Section 4. Given
these assumptions, WCET could be conceptually determined by identifying the
feasible path through the program with the longest execution time.

Instruction-level architectural simulation techniques have now matured so
that the execution time of a program run on complex processor architectures
can be accurately determined with a reasonable simulation efficiency [12,17].
The advantages of using architectural simulation techniques are twofold. First,
it is possible to make arbitrarily accurate estimations of the execution time of
a program, given a combination of input data. Second, and presumably more
importantly, when a given path through the program has been simulated, all
input data independent dependencies will be resolved.

We first describe how we have extended traditional instruction-level simula-
tion to automate the path analysis in Section 2.1. Then, in Section 2.2 we discuss
some performance issues with the basic approach and how they are addressed.

2.1 Path analysis using instruction-level simulation techniques

Instruction-level simulation techniques assume that input data is known and
therefore only analyze a single path through the program associated with this
input data. To find the WCET of a program using this approach, however, the
program would have to be run with all possible combinations of input data which
is clearly not feasible. Our approach is instead to simulate all paths through the
program and in this process exclude the paths that are not possible regardless of
input data. To do this, we have extended traditional instruction-level simulation
techniques with the capability to handle unknown data, using an element denoted
unknown. Then the semantics for each data-manipulating instruction is extended
to correctly perform arithmetics with the unknown data values. Examples of the
extended semantics for some common instruction types can be seen in Table 1.

The load and stores need special treatment, since the reference address used
may be unknown. For loads, this results in an unknown being loaded into a reg-
ister. For stores, however, an unknown address can modify an arbitrary memory
location. Therefore, the correct action would be to assign the value unknown
to all memory locations to capture the worst-case situation. This is of course
a major limitation. For the time being, we will assume that all addresses are
statically known. However, we will discuss efficient solutions to overcome this
limitation later in Section 2.2.

The semantics for a conditional branch is also special. When a conditional
branch whose branch condition is unknown is encountered, both paths must be
simulated. To understand how this is used to automate path analysis, consider
the program in Figure 1 which sums values in the upper-right triangle of matrix
b. In the beginning of the simulation, the data values in matrix b are treated as
unknown input and all elements are assigned the value unknown. The boolean
values in matrix m are considered known.

Table 1. Extended semantics of instructions.

Instruction |Example Semantics
type

ALU ADD T AB T { unknown if A = unknownV B = unknown

A+ B otherwise

Compare [CMP A,B |A — B and update the condition code (cc) register. May

set bits in the cc-register to unknown.

Conditional |BEQ L1 Test bit in cc-register to see if we should branch. If bit is
branch unknown simulate both paths.

Load LD R,A Copy data from memory at address A to register R (the

data can be unknown). If address is unknown, set R to
unknown.
Store ST R,A Copy data from register R to memory at address A (the
data can be unknown). If address is unknown, all memory
locations are assigned unknown (a more efficient solution
is discussed in Section 2.2).

for (i =0 ; 1 < 4 ; i++)
if (b[i][i] > 0)
for (j = i+l ; j < 4 ; j++)
if (m[il (3D
sum += b[i] [j];

o WN -

Fig. 1. Example program.

When simulating this program, the conditional branch on line 2 will be the
only branch depending on unknown values and the total number of simulated
(and feasible) paths will be 2* = 16. The infeasible paths that the conditional
branch on line 4 could create are automatically eliminated since the branch
condition is known when simulating. Also, no loop bound is needed for the inner
loop since the iteration count only depends on variable 7 which is known during
the simulation. Thus, we see that an important advantage of the instruction-
level simulation approach is that all conditions that depend on data values that
are known statically will be computed during the simulation. This eliminates, in
this example, the need for program annotations.

2.2 Discussion

Ideally, for each combination of input data, the goal is to eliminate all infeasi-
ble program paths. The domain of values we use, however, makes it sometimes
impossible to correctly analyze mutually exclusive paths. Consider for example
the statements below where b is unknown.

if (b < 100) funi()

if (b > 200) fun2()

Variable b will be unknown in both conditions, forcing the simulation of
four paths even if fun1 () and fun2() are mutually exclusive and the number of
feasible paths are three. The effect of this will be a potential overestimation of the
WCET which is caused by the fact that we only distinguish between known and
unknown values. However, there is nothing in the approach that would hinder us
from extending the domain of values to, e.g., ranges of values. By doing this, it
would be possible to handle cases like the one above. The simulation technique
we have implemented, and which we evaluate later in the paper, uses the simpler
domain. However, we will discuss the implications of using ranges in Section 6.

As mentioned above, store instructions with an unknown reference address
need special treatment. To efficiently handle these accesses, we identify all data
structures that are accessed with unknown store instructions as unpredictable
data structures. These are mapped by the linker into a memory area which can
only respond with unknown values. This means that stores to this area can be
ignored and loads will always return unknown as a result, thus assuring us of a
correct estimation of the WCET with no added cost in simulation time.

We identify the unpredictable data structures by letting the simulator output
a list of all unknown stores it encounters. With the help of a source-code de-
bugger, it is possible to connect each store instruction to a data structure which
is marked as unpredictable. Eventually, the linking phase is redone to properly
map the marked data structures to the 'unknown’ area of memory. After this
step, a correct estimation may be done. The approach mentioned above can be
used for statically allocated data structures only. For unpredictable dynamically
allocated data structures we do not yet have any solution.

A key problem with the simulation approach in this section is the explosion
in number of paths to be simulated. If a loop iteration has n feasible paths
and the number of loop iterations is k, the number of paths to simulate is n*.
Fortunately, good heuristics exist to drastically reduce the number of paths we
need to simulate. We have used a path merging strategy, which forms the basis

of our WCET method to be presented in the next section.

3 The WCET Method

To reduce the number of paths that have to be explored in the path analysis, we
apply a path-merge strategy. This reduces the number of paths to be explored
from n* down to n for a loop containing n feasible paths in each iteration and
doing k iterations. In each loop iteration, all n paths are explored but in the
beginning of the next iteration all these n paths are merged into one. Thus, the
number of simulated paths are less than or equal to n. We first describe how
the merging operation is performed in Section 3.1. This operation is used in
the WCET algorithm which we present in Section 3.2. Finally, in Section 3.3 we
discuss how we have implemented the method with a reasonable time complexity.

3.1 Merging algorithm

In order to understand how the merging of two paths is done, consider again the
example program in Figure 1. In the second iteration of the outer loop, when the
simulator encounters the unknown conditional branch on line 2, two paths can
be merged. When merging, the long path (the one with the highest WCET) is
kept and the short path is discarded. However, to make a valid estimation of the
worst-case execution path throughout the program execution, the impact of the
short path on the total WCET must be taken into account. For example, variable
sum can be assigned different values in the two paths. Therefore, all variables
whose values differ, must be assigned the value unknown in the resulting path
of the merge operation.

Formally, the algorithm views a path, p4, as consisting of a WCET for the
path, p4.wcet, and the system state at the end of the path, pa.state. The state
of a path is the partial result of the execution including, e.g., the content of all
memory locations, registers, and status bits that can affect the WCET in the
future. In order to compute the state of the path resulting from the merging of
several paths, the states of the merged paths are compared and unknown values
are assigned to locations whose values differ. We denote this operation as the
union operation of path states.

The merging algorithm is described in Algorithm 1. It creates a new path p¢
from two paths p4 and pp. The program counter, which must not differ in the
two paths merged, is copied to the new path. The new WCET is the maximum
of the WCET of the two original paths. Finally, states of the merged paths are
unioned. The union operation between values is defined as:

unknown if a = unknown V b = unknown
aUb & ¢ unknownif a # b
a otherwise

Algorithm 1 Merging two paths p4 and pp creating pc.

{PCT = program counter, CC = condition code}
Require: p4.state. PCT = pp.state. PCT
pc.state. PCT <+ pa.state. PCT

pc.weet max(pa.weet,pp.weet)

pc-state.CC < pa.state.CC' U pp.state.CC
for all registers i do
pc.state.R[i] < pa.state.R[i] U pp.state.R][i]
end for
for all memory positions a do
pc.state. MEM|[a] < pa.state. M EM[a] U pp.state. M EM]|a]

end for

3.2 WCET algorithm

In order to implement the WCET simulation technique and the merging algo-
rithm, one important issue is in which order paths should be simulated. Consider
a loop with two feasible paths in each iteration. In order to merge these two paths,
they must have been simulated the same number of iterations. To accomplish
this, the WCET algorithm uses loop information from the control flow graph of
the program.

The algorithm (see Algorithm 2) starts the simulation from the beginning of
the program. Whenever an unknown conditional branch is found, the simulation
is stopped and the algorithm selects, as the next path to simulate, the path
that has made the least progress, a minimum progress path, in terms of loop
iterations. If this path is not unique, all paths that have made the same progress
and are at the same position in the program, equal progress paths, are merged
into one before simulation is continued.

By always selecting the path that has made least progress, the algorithm
makes it certain that all paths in a loop iteration is simulated before a new
iteration begins. In fact, merging will occur every time two paths that have
made equal progress meet at the same position in the program. This makes an
exponential growth of the number of paths impossible.

3.3 Performance considerations

The performance of this method depends on how many paths we need to simu-
late, how often merging is done and how fast the actual merge operation is. How
often the merging should be done is a complex question. If we merge often, it is
likely that we will have fewer paths to simulate. However, when doing a merge
we can lose information in a way that makes us fail to eliminate infeasible paths.
Thus, merging too often can also create more infeasible paths and in the end
lead to a larger number of simulated paths.

The algorithm we have evaluated merges as often as possible. This makes an
exponential growth of the number of paths impossible, e.g. in loops. Typically,
each unknown branch found during the simulation would lead to the creation
of yet another path, which later would result in an additional merge operation.
The total number of paths simulated, as well as the number of merge operations,
can in some cases grow in proportion to the number of loop iterations done in
the program. One example is a loop with one unknown exit condition. The
simulation of this loop would produce one new path (the exit path) to simulate
each iteration. All these paths would, unless they reach the end of the program,
be merged resulting in an equal number of merge operations.

For each merge operation, one must union the content of all registers and
memory locations. This might be a quite slow process if the amount of memory
is large. We can speed up this operation considerably by utilizing the fact that
paths that are to be merged, often shared a long history of execution before they
got split up. By only recording changes made to the system state since the time
where the two paths were created, we can quickly identify the parts of memory

Algorithm 2 WCET algorithm handling merge.

{A is set of active paths, C completed paths, § = empty set, \ = set minus}
A—0,C«0

p < starting null path

Simulate(p)

if p reached end of program then
C + CU({p}

else {p reached an unknown conditional branch}
A+ AU {p}

end if

while A not empty do
p < minimal progress path in A
A A\ {p}
for all paths ¢ with equal progress as p do
A A\{g}
p < merge(p, q)
end for
{Path p ends with a branch forcing a split}
for each possible branch target ¢ do
pi < copy of p
Simulate(p;) along target 3
if p; reached end of program then
C + CU{pi}
else {p; reached an unknown conditional branch}
A+ AU {p:}
end if
end for
end while

weet <~ maxpeo p.wceet

where the two system states differ. As an example, suppose that the system we
model contains 1 Mbyte of main memory. Then one can divide this memory into
small fixed size pages (say 512 bytes each) and each path only keeps the accessed
pages in its system state. In this way, only a few pages of memory need to be
compared during merging.

4 Timing Analysis

The WCET algorithm in the previous section can estimate WCET for hardware
platforms with fixed instruction execution times. In this section, we extend it
to model the timing of pipelined processors with caches. To demonstrate the
approach, we particularly focus on systems with separate, direct-mapped in-
struction and data caches and a single-issue pipelined execution unit. However,
the approach extends to more sophisticated architectures.

In order to update the WCET properly during simulation, the simulator
must of course be extended to model the timing of caches and pipelines. In the
context of caches, the simulator must model the impact of cache misses on the
execution time. And in the context of pipelines, the simulator must account for
the impact of structural, data, and control hazards [6] on the execution time.
With this capability, it is possible to make a safe estimation of the execution
time of a given path through the program.

A critical issue is how to carry out a merge operation. To do this, one must
be able to estimate the impact of the system state on the future execution time.
Such state information is exemplified by the content of the tag memory in the
caches (which affects future misses) and resources occupied by an instruction,
such as data-path components and registers (which affect future structural, data
and control hazards). The merging operation introduced in Section 3 must be
extended to handle such state information, which we will refer to as timing state.

To merge the timing state, we could use the same general principle as used
when merging the content of memory locations; for all locations where the timing
state differs we assert a pessimistic value, such as unknown in the merged timing
state. For example, in the case of most caches unknown means that a cache block
is invalid, and the unioning of two cache timing states makes all cache blocks
whose tags differ invalid. We call this method the pessimistic merge, since it can
incur a severe pessimism in the estimation.

Fortunately, it is possible to reduce the pessimism when merging. If it was
known in advance which path belongs to the worst case path through the pro-
gram, one could update the worst-case execution time with the execution time
of that path and also choose the timing state of that path when merging and
discard the timing state of the other path. Then, no pessimism would be in-
curred on a merge operation. While it is not possible to know in advance which
of the two paths belongs to the worst-case path, a good guess would be that the
longer of the two belongs to the worst-case path. If we also estimate how big
effect the timing state of the shorter path has on the future execution time, we
can make sure whether it is correct to use the WCET of the longer path along
with its timing state when merging two paths. This approach is formulated in
the following algorithm where we assume that the worst-case execution times of
the long and the short paths are WCET and WCET g, respectively.

1. Estimate the worst-case penalty (WCET p) that the short path would incur on the
future execution time that will not be incurred by the long execution path.

2. If WCET; > WCETs + WCETp then use the timing state and WCET of the
long path in the merge operation and discard the timing state of the short path.

3. Otherwise, the pessimistic merge approach must be used.

In order to make this algorithm useful, we must clearly define what we mean
with timing state and worst-case penalty, and how to perform the pessimistic
merge. This is done in the next two sections in the context of caches and pipelin-

ing.

4.1 Instruction and data cache analysis

Both instruction and data caches can be described and treated using the same
principles. Therefore, we make no distinction between them. Consider the timing
state of two caches, C', and Cg, belonging to the long and short path, respec-
tively. The timing state of a cache is represented by an array of tags showing how
blocks are currently mapped in the cache. To calculate the worst-case penalty, we
must consider all cases where C's may lead to a greater number of future cache
misses than C, would. The worst case is found if we imagine that all cache blocks
resident in C'r, but not found in C's will be needed in the future. We would then
lose all these potential misses if we discard Cg. To find the worst-case penalty,
we go through all cache blocks and compare the tag in C's with the tag in Cf,
and sum up the cache miss penalties caused by all differences found.

While pessimistic merging might be needed if it is not possible to discard Csg,
it is not always necessary to invalidate all blocks found different. By invalidating
a block in C;, we make it impossible for Cs to cause any additional misses in
the future. Thus, for each block we invalidate in C';, we reduce the worst-case
penalty. Eventually, it may became small enough to proceed and actually discard

Cs.

4.2 Pipeline analysis

A timing model of a pipeline must keep track of the resources (pipeline stages
and registers) an instruction uses and when each resource is released in order
to resolve structural, data and control hazards. The time when each resource
is last released influences the future instructions and the worst-case penalty.
Consider the timing state of two pipelines, Pr, and Ps, belonging to the long
and short path, respectively. We want to estimate the possible future effect on
the execution time that Ps may lead to compared to P, and must in this case
consider all future hazards that Ps can lead to, which Py cannot lead to. For
each resource we determine when it is last released and whether it is released
later in Ps compared to Pr. The worst-case penalty is the maximum difference
in release time found among all resources.

If we are not allowed to discard Ps, we must do the pessimistic merge instead.
However, this can sometimes be avoided using the same principle as for the
caches; we change Pr in a way that reduces the possible future effect on the
execution time that Ps may lead to compared to Pr,. For each possible structural
or data hazard resulting from Ps but not from Pr, we can change Py so that
resources are released later. In this way we can gradually reduce the worst-case
penalty, until at last, we are allowed to discard Ps.

5 Experimental Results

We have estimated the WCET of seven benchmark programs, running on an
idealized architecture with no caches, and where all instructions execute in one
clock cycle. Thus, the evaluation focuses on the path analysis aspects of the
method.

5.1 Methodology

A WCET simulator has been constructed by extending an existing instruction-
level simulator, PSIM [2], which simulates the POWERPC instruction set. The
original simulator has been extended with the capability of handling unknown
values. Also, the WCET algorithm described in Section 3.2 has been added to
control the path exploration and merging. No cache and pipeline simulation was
enabled and the execution time is equal to the simulated instruction count.

The GNU compiler (gcc 2.7.2.2) and linker has been used to compile and
link the benchmarks. No optimization was enabled. The simulated run-time en-
vironment contains no operating system; consequently, we disabled all calls to
system functions such as I/O in the benchmarks.

Benchmarks and metrics An overview of the seven benchmark programs can
be seen in Table 2. There are four small programs: matmult, bsort, isort, and fib,
and three larger programs: DES, jfdctint, and compress.

The two benchmarks fib and compress both contain a loop where the exit
condition depends on unknown input data. In order to bound the number of
iterations, we need to add manual annotations. This is not supported in our
implementation. Instead, we have added an extra exit condition in the loops.
In fib we have added the condition: ¢ < 30 because we know that input data
is always in this range. In compress we bound an inner loop whose iteration
variable is j, using the current iteration count, i, of the outer loop: j < i. This
is a safe but very pessimistic bound, but we found it difficult to prove that a
tighter bound could be used.

The true WCETs of all programs have been measured by running the pro-
grams in the simulator with the worst-case input data. This works fine for all
programs except compress, where the worst case input data is hard to find.
Instead, a random sequence of 50 bytes has been used as input.

Besides the estimated WCET from the extended simulator, we also did a
manual estimate of the structural WCET, i.e., the execution time of the longest
structural path in the control flow graph of the program and using fixed bounds
on the number of iterations of all loops. This figure would represent a WCET
estimation method that eliminates no infeasible paths and uses fixed iteration
bounds for loops. The purpose of doing this is to analyze the capability of the
method to eliminate infeasible paths.

5.2 Estimation results

Table 2 compares the measured true WCET with the estimated WCET from
the simulator and the manually derived structural estimation for the benchmark
programs. (WCET is expressed in clock cycles, ratio is the WCET relative to
the measured, true WCET.)

For all benchmarks, except compress, we find that the method succeeds in
finding the true WCET. In compress, the overestimation is caused by the inner

Table 2. The estimated and true WCET of benchmark programs.

Measured| Estimated Estimated
Program |Description true structural
WCET | WCET Ratio| WCET Ratio
matmult |Multiplies 2 10x10 matrices 7063912|7063912 1{7063912 1
bsort Bubblesort of 100 integers 292026 292026 1| 572920 1.96
isort Insertsort of 10 integers 2594 2594 1 4430 1.71
fib Calculate n:th element of the 697 697 1 697 1
Fibonacci sequence
DES Encrypts 64-bit data 118675 118675 1} 119877 1.01
jfdctint |Discrete cosine transform of an 6010 6010 1 6010 1
8x8 image
compress|Compresses 50 bytes of data 9380| 49046 5.2 161161 17.2

loop. As mentioned previously, we bound this loop using the very pessimistic
condition j < %, but when measuring the true WCET, we found that this inner
loop is actually only doing one single iteration. For compress, we do not know if
the measured WCET is actually the true WCET. The true WCET is probably
higher than the measured one.

Two of the benchmarks, matmult and jfdctint, have no infeasible paths at all,
and only one path was simulated. In DES, however, there exist infeasible paths
caused by data dependencies between different functions. These infeasible paths
were eliminated and only one path was simulated. In bsort and isort, all infeasible
paths were not eliminated. Still, this did not lead to any over-estimation, since
all simulated infeasible paths were shorter than the worst-case path found.

If we take a look at the estimated structural WCET of the programs, we see
that the WCET is grossly over-estimated for bsort, isort, and compress. In bsort
and isort it depends entirely on using a fixed iteration count for an inner loop
which is normally bounded by the outer loops current iteration count. This leads
to an over-estimation of a factor of two for the loop and influences bsort more
than isort because of the greater number of iterations done in bsort. In compress
there is a similar inner loop which is forced to have a fixed iteration bound again
causing an over-estimation of a factor of two. In addition, there exists a very
long infeasible path that extends the structural estimate. This path is eliminated
when estimating with our simulation method. The tiny over-estimation in DES
results from infeasible paths that are not possible to eliminate.

One strength of doing the analysis on the instruction level can be seen when
looking at DES. In the source code, one can find several conditional expressions
which should indicate several possible feasible paths through the program. How-
ever, the compiler (gcc with no optimization enabled) automatically generates
code without any branches for these conditional expressions and the resulting
program has only a single feasible path. In summary, the method in this paper
appears promising in eliminating infeasible paths.

6 Discussion and Related Work

As the results indicate, to get a tight estimation of the WCET of a program, it
is crucial to eliminate infeasible paths, especially in the presence of loops with
dynamic bounds. Of equal importance is an accurate timing analysis. This has
not been evaluated in this study, but the potential can be seen when looking at
DES, matmult, and jfdctint, where the simulator only needs to simulate one path
through the program. This path can be simulated with an arbitrary detailed
timing model and will always give us the tightest possible WCET. Thus, by
eliminating infeasible paths we can concentrate on the feasible ones, and make
a more accurate timing analysis.

A big advantage of integrating the path and timing analysis can be seen
when comparing with solutions where the path and timing analyses are kept
separated. If the path analysis is done first, we would need a way to represent
the path information generated from the path analysis, and the timing analysis
phase must be able to utilize this information. On the other hand, if the timing
analysis is done first, we would be forced to work with fixed WCETSs for blocks of
statements when doing the path and WCET calculation. These problems are not
present in our method, which does the path and timing analysis simultaneously.

Our method is related to the path analysis methods presented in [1,3]. The
method of Ermedahl and Gustafsson operate on the source-program level. It
establishes upper bounds on the number of loop iterations and also identifies
infeasible paths, but makes no timing analysis. Altenbernd’s method uses precal-
culated execution times on each basic code block. These times are used to prune
paths during the path exploration. However, in some cases, the method suffers
from complexity problems. We use a path-merging strategy instead, which guar-
antees a manageable number of paths, and also makes it possible to integrate it
with a detailed timing analysis. In [15], Stappert and Altenbernd present a new
method which handles caches and pipelines by first making a timing analysis for
each basic block and then searching for the longest feasible path. The method
only handles programs without loops. In [4], a way to automatically derive loop
bounds by means of a syntactical analysis has been proposed. They successfully
use this technique together with timing analysis in order to reduce the work
for the user, but they do no general path analysis in order to identify infeasible
paths. In a recent work, Liu and Gomez [11] construct time-bound functions for
high-level languages, using a technique related to ours. However, no concern is
made for doing accurate low-level timing analysis.

In our method, the simulator uses a very simple domain where values can
be either known or unknown. This domain performs quite well compared to a
more complex domain, e.g., based on intervals of values which is used in [1,
3]. However, as we saw in Section 2.2, overestimations may sometimes arise for
mutually exclusive paths. There is no inherent problem in extending our method
to a more powerful domain. The result would be a slower simulator needing
more memory. Qur choice of domain results in an additional 1 bit of memory
for each 32-bit word of memory to hold the known/unknown status. An interval
representation would need 2 extra words for each word of memory. Also, a more

complex semantics would be needed, which would result in a slower execution
of each instruction. On the other hand, the more complex domain might be
preferable for some applications, if it manages to cut more infeasible paths and
thereby gain speed and accuracy compared to our simple domain.

A more serious problem with our simple domain is that if all exit conditions
of a loop is input data dependent, we get a completely unknown upper bound
on the number of iterations in the loop, and our WCET algorithm will not
terminate. This can be detected by using some heuristic or by user interaction.
For cases like this, we must add a manual annotation or add a known exit
condition by modifying the loop condition in the program. For example, the loop
in the program below, where b is unknown input data, will never do more than
100 iterations regardless of b. This fact cannot be represented with our simple
domain, and during the simulation the loop will get a completely unknown exit
condition, forcing us to add annotations or modify the program.

if (b < 100)
for (1 =0 ; 1 < b ; i++)
sum = sum + i;

In the example above the simple domain was causing the problem. A similar
problem can also arise when merging. The union operation used when merging
may cause information needed to bound a loop to be lost. If this happens, we
are also forced to annotate or change the program.

7 Conclusions

In this paper we have presented a new method for estimating the WCET of
a program. This method integrates path and timing analysis and thereby has
the potential to do tight estimations by eliminating infeasible paths and con-
centrating the timing analysis on the feasible ones. A study of seven benchmark
programs, focusing on the path analysis aspects, show that many infeasible paths
were indeed eliminated by the method, and the true WCET was found for almost
all programs. However, it remains to be shown how well the method performs
when considering the timing analysis as well. This is the topic of our current
and future work.

Acknowledgments

We are deeply indebted to Dr. Jan Jonsson of Chalmers for his constructive
comments on previous versions of this manuscript. This research is supported
by a grant from Swedish Research Council on Engineering Science under contract
number 221-96-214.

References

1. P. Altenbernd. On the false path problem in hard real-time programs. In Proceedings
of the 8th Euromicro Workshop on Real-Time Systems, pages 102-107, June 1996.

2. A. Cagney. PSIM, POWERPC simulator. ftp://ftp.ci.com.au/pub/psim/index.html

3. A. Ermedahl and J. Gustafsson. Deriving annotations for tight calculation of exe-
cution time. In Proceedings of EUROPAR’97, pages 1298-1307, August 1997.

4. C. Healy, M. Sj6din, V. Rustagi, and D. Whalley. Bounding Loop Iterations for
Timing Analysis. In Proceedings of the 4th IEEE Real-Time Technology and Appli-
cations Symposium, June 1998. To appear.

5. C. A. Healy, D. B. Whalley, and M. G. Harmon. Integrating the timing analysis
of pipelining and instruction caching. In Proceedings of the 16th IEEE Real-Time
Systems Symposium, pages 288-297, December 1995.

6. J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Ap-
proach, 2ed. Morgan Kaufmann, 1996.

7. S-K. Kim, S. L. Min, and R. Ha. Efficient worst case timing analysis of data
caching. In Proceedings of the 2nd IEEE Real-Time Technology and Applications
Symposium, pages 230-240, June 1996.

8. Y.-T. S. Li, S. Malik, and A. Wolfe. Efficient microarchitecture modeling and path
analysis for real-time software. In Proceedings of the 16th IEEE Real-Time Systems
Symposium, pages 298-307, December 1995.

9. Y.-T. S. Li, S. Malik, and A. Wolfe. Cache modeling for real-time software: Be-
yond direct mapped instruction caches. In Proceedings of the 17th IEEE Real-Time
Systems Symposium, pages 254-263, December 1996.

10. S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L. Min, C. Y. Park, H. Shin,
K. Park, and C. S. Kim. An accurate worst case timing analysis technique for RISC
processors. In Proceedings of the 15th IEEE Real-Time Systems Symposium, pages
97-108, December 1994.

11. Y. A. Liu and G. Gomez. Automatic Accurate Time-Bound Analysis for High-
Level Languages. Dept. of Computer Science, Indiana University, Technical Report
TR-508, April 1998.

12. P. Magnusson, F. Dahlgren, H. Grahn, M. Karlsson, F. Larsson, A. Moestedt,
J. Nilsson, P. Stenstrém, and B. Werner. Simics/sundm: A virtual workstation. In
Proceedings of USENIX98, 1998. To appear.

13. G. Ottosson and M. Sjodin. Worst-case execution time analysis for modern hard-
ware architectures. In Proceedings of ACM SIGPLAN Workshop on Language,
Compiler, and Tool Support for Real-Time Systems, June 1997.

14. P. Puschner and C. Koza. Calculating the maximum execution time of real-time
programs. The Journal of Real-Time Systems, pages 159-176, 1989.

15. F. Stappert and P. Altenbernd. Complete Worst-Case Execution Time Analy-
sis of Straight-line Hard Real-Time Programs. C-LAB Report 27/97, Paderborn,
Germany, December 1997.

16. R. T. White, F. Mueller, C. A. Healy, D. B. Whalley, and M. G. Harmon. Timing
analysis for data caches and set-associative caches. In Proceedings of the 3nd IEEE
Real-Time Technology and Applications Symposium, pages 192-202, June 1997.

17. E. Witchel and M. Rosenblum. Embra: Fast and flexible machine simulation. In
Proceedings of ACM SIGMETRICS ’96, pages 68-79, 1996.

