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Göteborg, Sweden 2002

A WCET Analysis Method for Pipelined Microprocessors with Cache Memories
Thomas Lundqvist
ISBN 91-7291-182-4

c© 2002 by Thomas Lundqvist

Doktorsavhandlingar vid Chalmers tekniska högskola
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A WCET Analysis Method for Pipelined Micro-
processors with Cache Memories

Thomas Lundqvist
Department of Computer Engineering, Chalmers University of Technology

Abstract

When constructing real-time systems, safe and tight estimations of the worst case
execution time (WCET) of programs are needed. To obtain tight estimations, a
common approach is to do path and timing analyses. Path analysis is responsible
for eliminating infeasible paths in the program and timing analysis is responsible
for accurately modeling the timing behavior of programs. The focus of this
thesis is on analysis of programs running on high-performance microprocessors
employing pipelining and caching.

This thesis presents a new method, referred to as cycle-level symbolic execu-
tion, that tightly integrates path and timing analysis. An implementation of the
method has been used to estimate the WCET for a suite of programs running on
a high-performance processor. The results show that by using an integrated anal-
ysis, the overestimation is significantly reduced compared to other methods. The
method automatically eliminates infeasible paths and derives path information
such as loop bounds, and performs accurate timing analysis for a multiple-issue
processor with an instruction and data cache. The thesis also identifies timing
anomalies in dynamically scheduled processors. These anomalies can lead to
unbounded timing effects when estimating the WCET, which makes it unsafe to
use previously presented timing analysis methods. To handle these unbounded
timing effects, two methods are proposed. The first method is based on program
modifications and the second method relies on using pessimistic timing models.
Both methods make it possible to safely use all previously published timing anal-
ysis methods even for architectures where timing anomalies can occur. Finally,
the use of data caching is examined. For data caching to be fruitful in real-time
systems, data accesses must be predictable when estimating the WCET. Based
on a notion of predictable and unpredictable data structures, it is shown how
to classify program data structures according to their influence on data cache
analysis. For both categories, several examples of frequently used types of data
structures are provided. Furthermore, it is shown how to make an efficient data
cache analysis even when data structures have an unknown placement in mem-
ory. This is important, for example, when analyzing single subroutines of a
program.

Keywords: Real-time systems, worst-case execution time, timing analysis,
path analysis, infeasible paths, pipeline, instruction cache, data cache, timing
anomaly, dynamically scheduled processor.
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Fredrik Dahlgren, Elisabeth Uhlemann, Lars Rasmussen, Ulf Hansson,
and Fredrik Lundholm. I am also grateful to the supporting staff that
keeps the offices, paper work, and computers running.

Finally, thank you Ulrika, Emil, and Andrea for being there. I will
soon be home to hug you.



Chapter 1

Introduction

During the last decades, general-purpose computers have been increasing
their performance by several magnitudes. The high performance we see
today has been accomplished by using a high processor clock frequency
and new architectural mechanisms in the processor. This has also made
processors more and more complex. For example, cache memories are
used to compensate for the relatively slow speed of memory and instruc-
tions are executed in parallel by using pipelined execution and multiple
execution units.

In some computer systems, a high performance can be useless if we
cannot make guarantees of the performance when designing the system.
One example of such systems is real-time systems, where the computer
must interact with its environment in a timely manner. For example, a
computer controlling the ignition in a combustion engine must finish its
calculations before its deadline, i.e., before it is time for the next ignition.
A high performance can help a program to finish in time. On the other
hand, a too high performance can be a waste of resources. If there is no
added benefit of going much faster than the deadline, then a slower, less
expensive, and more energy efficient processor can be used.

A program deadline is often classified as being hard or soft depending
on what happens if the deadline is missed. If hard deadlines are missed the
system will fail, whereas missed soft deadlines only degrades the service
provided by the system. When designing a program that has a hard
deadline constraint, we must be able to certify that the program finishes
within the given deadline before we run it in a production environment.

1
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This means that we must assure that the execution time of the program
always is shorter than the specified time. In practice, this is often done
by using extensive testing, i.e., by running the program many times with
different input data and measuring the execution time. The problem with
testing is that it can take a long time to reach the level of confidence that
we want. There are often too many combinations of input data to try,
and testing can only try relatively few of them. If missing a deadline can
lead to very costly consequences, testing may not be an adequate method.

A promising way to improve the situation is to complement the test-
ing with an analysis tool that estimates the worst-case execution time
(WCET) of a program. Such a tool can cover all combinations of input
data but with lower precision than testing, i.e., the actual WCET can
be overestimated but is still safe to use to verify that a program finishes
before its deadline. The principles behind one approach to construct such
an analysis tool is the topic of this thesis.

1.1 Worst-case execution time

The execution time of a program that runs uninterrupted on a processor
depends both on program characteristics and the hardware that executes
the program. For a simple processor where single instructions have a
fixed execution time, the program execution time is solely determined by
the input data given to the program. The input data can influence the
path taken through the program and the number of loop iterations done
in loops and this causes the execution time to vary.

For a more complex computer system, the execution time also de-
pends on the previous programs that have executed on the processor,
the execution history of the system. Also, some single instructions can
have an execution time that depends on the input data. A good example
of the added complexity is to consider a data cache that holds recently
fetched data from the main memory. A single load instruction that loads
data from memory executes fast if the data already exists in the cache
(a cache hit) and slow if it must fetch data from memory (a cache miss).
The outcome can depend both on the previous content of the data cache
(the execution history) and the address used when accessing memory and
this address can depend on the input data given to the program.

So, in order to find the worst-case execution time, we must consider
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both the program characteristics and the hardware platform that runs
the program:

Definition 1.1 The worst-case execution time (WCET) of a program
that runs uninterrupted on a processor is defined as being the maximum
possible execution time considering all combinations of input data and all
possible execution histories of the system before the program is executed.

The WCET of a program can be infinite. In that case, it will surely
miss its deadline. We will assume that a program, or part of a program
that we want to study, has a finite WCET, at least for the input data
range the program is supposed to handle.

1.2 Research goal

The overall goal of the work presented in this thesis is to develop analysis
methods that can derive estimates of the WCET for programs running on
computer systems where the execution history can influence the timing of
instructions.

The estimates derived must be safe and also preferably tight. A safe
estimate means that the actual WCET is not underestimated so that the
estimate can be used to verify that a program finishes before its deadline.
A tight estimate means that the overestimation should be as small as
possible in order to make effective use of the processor.

The target system that we would like to be able to analyze consists
of a processor that executes multiple instructions simultaneously in a
pipelined manner and uses instruction and data caching. An example of
such a system can be seen in Figure 1.1. In each cycle, one or several new
instruction are fetched from the instruction cache (or the main memory
in case of a cache miss) and inserted into the pipeline. First, the instruc-
tions are decoded and then they wait to get dispatched to one of several
execution units. The load/store unit handles memory access instructions
that transfers data between the processor registers and the data cache (or
main memory in case of a cache miss). The integer and the floating point
units handle instructions that perform arithmetic operations between the
registers.

To reach high performance, several more complex techniques are used.
Typically, multiple instructions can be fetched and executed in each cycle.

4 CHAPTER 1. INTRODUCTION

DS
Insn. dispatch

Floating point unit

IU
Integer Unit
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Load/Store Unit
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Main memory

point registers

Integer and floating

Data CacheInstruction Cache

Figure 1.1: Example of pipelined architecture.
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Then, because the instruction execution time can vary depending on type
and input data, these instructions are allowed to execute out-of-order, i.e.,
not in program order. Also, the scheduling of instructions can be static
or dynamic based on whether the execution order is determined by the
program code or determined at run-time. Ideally, the goal is to be able
to analyze the impact of these mechanisms on the worst-case execution
time.

Often, a program is interrupted (preempted) by other programs shar-
ing the same processor and by interrupt handlers servicing hardware de-
vices. In this case, the WCET estimates of all programs will serve as
input to a schedulability analysis that is used to verify that a set of pro-
grams, running on the same processor, finishes before their deadlines. The
definition of WCET relies on uninterrupted program execution. There-
fore, the schedulability analysis must include an analysis of the effects of
preemption on the worst-case execution time. Further discussion about
scheduling issues can be found in Section 6.6.

1.3 Problem definition

An exact approach to find the WCET, is to analyze the program once
for each combination of input data and find the input values that give
the maximum execution time. However, an exhaustive search through all
input data is often not practical due to the large number of combinations
to test. Instead, a common approach is to find the longest path in the
program, i.e., the path having the longest worst-case execution time. This
approach can cause overestimation of the WCET due to two important
reasons. First, the analysis may include program paths that can never
be executed regardless of the input data, usually referred to as infeasible1

program paths. Second, the timing model of the hardware platform may
introduce overestimations of the WCET because of simplifying timing
assumptions. To reduce the overestimation we need to perform good
path analysis as well as good timing analysis.

1Infeasible paths are sometimes called non-executable or dead program paths

6 CHAPTER 1. INTRODUCTION

1.3.1 Path analysis

The path analysis is responsible for identifying infeasible paths. Ideally,
the set of program paths considered when searching for the longest path
should be the same as when an exact exhaustive testing approach is used.
However, in the general case, it is not possible to derive this set of feasible
paths solely from the program code and still avoid an exhaustive search
through input data. Therefore, a common solution is to separately add
information about infeasible paths to the WCET analysis. The most
important infeasible paths to eliminate are the ones leading to infinite
number of loop iterations or recursive function calls. The elimination of
other infeasible paths serves to tighten the analysis.

Another complication is that we might need an analysis for only a
subset of the input data. A typical reason for this is that the program is
only defined for a subset of the input data and might not even terminate
for input data outside of this subset. Other reasons include, for exam-
ple, that we want several analyses for specific subsets of the input data
representing different modes of operation for the program. From a path
analysis perspective, restricting the analysis to a subset of the input data
corresponds to a possible increase of the number of infeasible paths to
eliminate.

Information about infeasible paths can be given by the programmer by
means of manual path annotations [PK89]. However, this requires a con-
siderable programming effort and is error-prone. A more attractive way
is to use methods that do automatic path analysis [Alt96, CBW94, EG97,
FHL+01, HSR+00, HW99, GL02, NP93, EY97]. These can automatically
derive upper bounds on many loops and identify many infeasible paths.
Thus, the need for manual annotations can be reduced or completely re-
moved. Furthermore, automatic path analysis methods can make it more
easy to express which subset of the input data we want to analyze. A
general problem that all methods face is how to combine an automatic
path analysis with accurate timing analysis.

1.3.2 Timing analysis

The timing analysis must calculate how many cycles each instruction re-
quires to execute. Since the instruction execution time for an instruction
can depend on the other instructions that execute simultaneously in the
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pipeline and the execution history, the result gets more accurate when
many instructions are analyzed together. Ideally, all instructions along
the worst-case path in the program should be analyzed together to obtain
the most accurate result. However, this is not generally feasible since we
do not know if a path is the worst-case path before having analyzed all
paths and the number of program paths to examine can be too many.

For simple architectures, where the execution time of each instruction
is independent of the execution history, the methods presented by, for
example, Puschner and Koza [PK89] or Shaw [Sha89] can be used. These
methods calculate the sum of all execution times for each instruction or
statement. However, for more complex architectures, simple arithmetic
is not sufficient. When determining the execution time of a single in-
struction we must take into account how the timing is influenced by all
previously executed instruction. To solve this problem, we are forced to
use some kind of heuristic approach. A commonly used approach is to
split the timing analysis into one analysis for each architectural mecha-
nism.

Previously presented timing analysis approaches [CP01, FHL+01,
HWH95, WMH+99, Mue00, LBJ+94, KMH96, LMW95, LMW96, OS97,
PS97, SA00, WE00] have targeted instruction and data cache analysis,
branch prediction analysis, and pipeline analysis. These methods can be
used to successfully analyze a wide range of architectures. However, many
problems remain to be solved. It is still unclear if it is possible to make
an accurate analysis for a more complex pipeline, using for example, dy-
namic scheduling of instructions. Furthermore, instruction caching and
branch prediction can be predictably analyzed, but data caching poses a
more challenging problem. The reason for this is that instruction caching
and branch prediction depends on the control flow of the program which
is often predictable, while data caching depends on data accesses that can
reference data in an order determined dynamically during execution and
this order can also depend on input data.

1.4 Contributions

The main contribution in this thesis concerns a new approach to WCET
estimation. Based on instruction-level simulation, each path in a program
is simulated using a cycle-accurate timing model. The approach integrates

8 CHAPTER 1. INTRODUCTION

automatic path analysis with timing analysis in a way that can result in
very tight WCET estimates. Further contributions focus on the problems
of dynamically scheduled pipelines and efficient data cache analysis.

Contributions concerning the new approach:

1. I present a new approach to static estimation of the WCET, referred
to as cycle-level symbolic execution [LS98, LS99a], that integrates
automatic path analysis with timing analysis. I demonstrate how to
handle an example system with a dual-issue pipeline with in-order
instruction dispatch and instruction and data caches. The memory
system beyond the cache memories has not been considered.

2. I have constructed a prototype tool that implements the new ap-
proach. The tool works on the object-code level but assumes that
the source code is written in C or a similar language.

3. An experimental evaluation has been done by using the prototype
tool to estimate the WCET for several benchmark programs. The
results show that the method can derive tight estimates of the
WCET.

Contributions concerning pipeline analysis:

3. I identify the presence of timing anomalies in dynamically sched-
uled, pipelined processors where instructions can execute out-
of-order [LS99c]. These anomalies can lead to unbounded tim-
ing effects that make it unsafe to use my basic approach for
dynamically scheduled processors. This unsafe behavior is also
a problem for other previously presented timing analysis meth-
ods [CP01, FHL+01, HWH95, WMH+99, Mue00, LBJ+94, KMH96,
LMW95, LMW96, OS97, PS97, SA00, WE00].

4. I present and evaluate new approaches to avoid these anomalies.

Contributions concerning data cache analysis:

5. Based on my notion of predictable and unpredictable data struc-
tures, I show how to classify program data structures according to
their influence on data cache analysis [LS99b].
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6. I provide examples of frequently used types of data structures that
fall into these two categories and also propose a way of making their
cache behavior predictable.

7. I show how to make efficient data cache analysis even when data
structures have an unknown placement in memory [Lun02]. This
is important, for example, when analyzing single subroutines in a
program.

1.5 Organization of the thesis

This thesis is organized as follows:

Chapters 2-5 In these chapters, I describe and evaluate my new ap-
proach to WCET estimation, cycle-level symbolic execution. Chap-
ter 2 focuses on the path analysis capabilities, explaining how in-
feasible paths are eliminated and how the merging of paths works.
In Chapter 3, a timing model is added. The central problem here
is how to perform the merge operation while still deliver a safe esti-
mate. The merge operation is defined for a simple pipeline processor
with instruction and data caches. I discuss the implementation of
the prototype tool in Chapter 4 before presenting the results from
the experimental evaluation in Chapter 5.

Chapter 6 Here, I identify where timing anomalies show up in dynam-
ically scheduled processors. I give examples of several situations
where traditional timing analysis methods (mine included) will give
an unsafe result. Finally, I suggest and evaluate methods that make
it possible to derive safe estimates.

Chapters 7-8 These chapters concern data cache analysis. In Chap-
ter 7, I introduce the notion of when a data structure is consid-
ered predictable and show a method to classify data structures as
predictable or unpredictable. In Chapter 8 I extend this by also
showing how to handle data structures with an unknown placement
in memory.

Chapter 9 In this chapter I conclude the thesis by discussing some fu-
ture and related work.

10 CHAPTER 1. INTRODUCTION



Chapter 2

Cycle-Level Symbolic
Execution

Cycle-level architectural simulation techniques is commonly used for
studying the interaction between running programs and architectural
mechanisms [ALE02, HPRA02, MDG+98]. It is also used more and more
to debug programs, even for real-time systems [AM00]. We propose to
also use these techniques to estimate the WCET of a program. The ad-
vantages of using architectural simulation techniques are twofold. First,
it is possible to make arbitrarily accurate estimations of the execution
time of a program for a given set of input data. Second, and presumably
more importantly, when a given path through the program is simulated,
precise information about this path is automatically extracted.

A cycle-level architectural simulator can be seen as an instruction-
level simulator connected to a clock-cycle accurate architectural timing
model. In this chapter, we will focus on the path analysis capabilities and
assume an instruction-level simulator connected to a timing model that
uses fixed instruction execution-times. In the next chapter, which deals
with timing analysis, we will show how a more complex timing model can
be integrated in this framework.

In this chapter, we first present how simulation can be extended to
estimate WCET and the principles behind the automated path analysis.
This is done in Sections 2.1–2.3. Then, in Section 2.4 we describe how
the merging of paths is done and how this is controlled by the WCET
method. In the end of this chapter, in Section 2.6, we relate our approach
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to path analysis with previous work done in this area.

2.1 The approach

Instruction-level simulation techniques assume that input data is known
and therefore only analyze a single path through the program associated
with this input data. To find the WCET of a program using this approach,
however, the program would have to be run with all possible combina-
tions of input data which is clearly not feasible. Our approach is instead
to symbolically execute the program, which conceptually means that all
paths through the program are simulated and in this process infeasible
paths are excluded. To do this, we have extended traditional instruction-
level simulation techniques with the capability to handle unknown data
and also extended the semantics for each data-manipulating instruction
to correctly perform arithmetics with the unknown data values as follows.
We call the approach cycle-level symbolic execution.

Each data type is extended with an element denoted unknown. In
general, the semantics of all arithmetics and logical operations must be
redefined to correctly calculate the result if any of the source operands
have an unknown value. Examples of the extended semantics for some
common instruction types can be seen in Table 2.1. Consider for example
an add instruction, ADD T, A, B, that operates on the set of 32-bit un-
signed integers, Z = {0 . . . 232 − 1} and is defined as T ← A + B. In the
extended semantics, it is instead defined on the set Z = Z ∪ {unknown}
with the semantics seen in Table 2.1.

The load and stores need special treatment, since the reference address
used may be unknown. For loads, this results in an unknown value being
loaded into a register. For stores, however, an unknown address can
modify an arbitrary memory location. Therefore, the correct action would
be to assign the value unknown to all memory locations to capture the
worst-case situation. This is of course a major limitation and we will
discuss efficient solutions to overcome this limitation in Section 2.3.

The semantics for a conditional branch is also special. When a con-
ditional branch whose branch condition is unknown is encountered, both
paths must be simulated. On the other hand, when the branch condition
is known, the extended simulation technique will exclude paths that can
never be taken. Let’s review this path analysis capability in some more
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int fun(int b[4][4])
{

1 int i, j, sum = 0;
2
3 for (i = 0 ; i < 4 ; i++)
4 if (b[i][i] > 0)
5 for (j = i+1 ; j < 4 ; j++)
6 if (m[i][j])
7 sum += b[i][j];
8 return sum;

}

Figure 2.1: Example program that sums some of the values in the un-
known matrix b according to the known boolean matrix m.

detail in the next section.

2.2 Path analysis

To understand how the cycle-level symbolic execution technique can au-
tomate path analysis, consider the program in Figure 2.1 which calculates
the sum of some values in the upper-right triangle of matrix b. For sim-
plicity, we reason about the program in a high-level language, even if the
symbolic execution of course is done at the instruction level.

In the beginning of the symbolic execution, data values in matrix b
are treated as unknown input and all elements are assigned the value
unknown. The boolean values in matrix m are considered known. When
analyzing this program, the conditional branch at line 4 will be the only
branch depending on unknown values. Consequently, the two possible
execution paths originating from this conditional branch have to be sim-
ulated. One path continues through lines 3,4, the other one through lines
5,6. . . 3,4, until they hit the same unknown conditional branch again dur-
ing the second iteration of the outer loop. Continuing this way, 24 = 16
paths will reach the end of the program. WCET is the longest of these
paths. The infeasible paths originating from the conditional branch at
line 6 are automatically eliminated since the branch condition is deter-
mined during simulation. Also, no loop bound annotation for the inner
loop is needed since the iteration count only depends on variable i which
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is also determined during the simulation.
An important advantage of the symbolic execution approach is that

all conditions that depend on data values that are known statically will
be computed during the simulation. For example, input data indepen-
dent bounds on the number of loop iterations that are expressed with
arbitrarily complex functions are computed automatically. Interestingly,
our method also applies to recursive functions provided that the recursion
depth is bounded. Moreover, many infeasible paths will be excluded from
the analysis and will therefore not affect the WCET estimation.

2.3 Unknown store instructions

As mentioned above, store instructions with an unknown reference ad-
dress need special treatment. We define these stores as being unpre-
dictable accesses and to efficiently handle them, our method identifies all
data structures that are accessed with unpredictable accesses as unpre-
dictable data structures. These are mapped by the linker into a memory
area which can only return unknown values. Then, all unpredictable
accesses can be safely ignored. Predictable stores which access unpre-
dictable data structures are not permitted to change the memory and
predictable loads from unpredictable data structures will always return
unknown, thus assuring a safe estimation of the WCET with no added
cost in simulation time.

We identify the unpredictable data structures by letting the simu-
lator output a list of all unknown stores it encounters. With the help
of a source-code debugger, it is possible to manually connect each store
instruction to a data structure which is marked as unpredictable. Even-
tually, the linking phase is redone to properly map the marked data struc-
tures to the ’unknown’ area of memory. After this step, a correct esti-
mation may be done. The approach mentioned above can be used for
statically allocated data structures only. For unpredictable dynamically
allocated data structures we do not yet have any solution. A further dis-
cussion about predictable and unpredictable data accesses can be found
in Chapter 7.

A key problem with the simulation approach in this section is the
explosion in number of paths to be simulated. If a loop iteration has n
feasible paths and the number of loop iterations is k, the number of paths
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to simulate is nk. Fortunately, good heuristics exist to drastically reduce
the number of paths we need to simulate. We have used a path merging
strategy, which forms the basis of our WCET method to be presented in
the next section.

2.4 The WCET Method

To reduce the number of paths that have to be explored during path
analysis, we apply a path-merge strategy. This reduces the number of
paths to be explored from nk down to n for a loop containing n feasible
paths in each iteration and doing k iterations. In each loop iteration, all
n paths are explored but in the beginning of the next iteration all these
n paths are merged into one. Thus, the number of simulated paths is
less than or equal to n. We first describe how the merging operation is
performed in Section 2.4.1. This operation is used in the WCET algorithm
which we present in Section 2.4.2. Finally, in Section 2.4.3 we discuss time
complexity and termination of the algorithm.

2.4.1 Merging algorithm

In order to understand how the merging of two paths is done, consider
again the example program in Figure 2.1. In the second iteration of
the outer loop, when the simulator encounters the unknown conditional
branch at line 4, two paths can be merged. When merging, the long path,
i.e., the one with the highest WCET, is kept and the short path is dis-
carded. However, to make a valid estimation of the worst-case execution
path throughout the program execution, the impact of the short path on
the total WCET must be taken into account. For example, variable sum
can be assigned different values in the two paths. Therefore, all variables
whose values differ must be assigned the value unknown in the resulting
path of the merge operation.

Formally, the algorithm views a path, pA, as consisting of a WCET
for the path, wcetA, and the system state at the end of the path, stateA.
The state of a path is the partial result of the execution including, e.g.,
the content of all memory locations, registers, and status bits that can
affect the WCET in the future. In order to compute the state of the
path resulting from the merging of several paths, the system states of the
merged paths are compared and unknown values are assigned to locations
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{PCT = program counter, CC = condition code,
R = register, and MEM = memory}

Require: PCTA = PCTB

PCTC ← PCTA

CCC ← CCA ∪ CCB

for all registers R[i] do
RC [i]← RA[i] ∪RB [i]

end for
for all memory positions a do

MEM C [a]← MEM A[a] ∪MEM B[a]
end for

wcetC ← max(wcetA,wcetB)

Figure 2.2: Algorithm merging two paths pA and pB creating pC .

whose values differ. We denote this operation as the union operation of
path system-states.

The merging algorithm is described in Figure 2.2. It creates a new
path pC from two paths pA and pB . The program counter, which must be
the same in the two paths merged, is copied to the new path. The new
WCET is the maximum of the WCET of the two original paths. Finally,
the union of the system states of the merged paths is calculated. The
state of a path consists of: state = 〈PCT ,CC , R,MEM 〉, where PCT
is the program counter, CC is the condition code register, R is the set
of processor registers, and MEM is the memory content. The union
operation between values is defined as:

a ∪ b⇔



unknown if a = unknown or b = unknown
unknown if a 6= b
a otherwise

2.4.2 WCET algorithm

In order to implement the WCET simulation technique and the merging
algorithm, one important issue is in which order all the paths should be
simulated. Consider a loop with two feasible paths in each iteration. In
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order to merge these paths, they must have been simulated the same
number of iterations. To accomplish this, the WCET algorithm needs
loop information from the control flow graph of the program.

The algorithm (see Figure 1) starts the simulation from the beginning
of the program. Whenever an unknown conditional branch is found the
simulation is stopped and the algorithm selects as the next path to simu-
late the path that has made the least progress, a minimum progress path.
If this path is not unique, all paths that have made the same progress and
are at the same position in the program, equal progress paths, are merged
into one before the simulation is continued. The progress of a path is a
record of how many times the simulation of that path has passed each
loop header and entered each function, as well as how far the simulation
has proceeded in the current loop iteration, as dictated by the program
counter. The concept of path progress is refined further in the chapter
about the implementation, Chapter 4.

By always selecting the path that has made least progress, the algo-
rithm makes it certain that all paths in a loop iteration are simulated
before a new iteration begins. In fact, merging will occur every time
two paths that have made equal progress meet at the same position in
the program. This makes an exponential growth of the number of paths
impossible.

2.4.3 Time-complexity and termination

For a program with a single feasible path, the analysis time will be pro-
portional to the final WCET of the program. If the program contains
several feasible paths, the time complexity depends on how many paths
need to be simulated, how often merging is done and how fast the actual
merge operation is. How often the merging should be done involves an
important tradeoff. If merging is done too often, it is likely that there will
be fewer paths to simulate. However, when doing a merge, information
can be lost because variables whose values differ are assigned unknown.
This may result in infeasible program paths not being eliminated which
in turn increases the number of simulated paths. Thus, merging less often
can actually lead to a fewer number of simulated paths.

The algorithm we have implemented merges as often as possible. This
makes an exponential growth of the number of paths impossible, e.g. in
loops. Typically, each unknown branch found during the simulation would
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Algorithm 1 WCET algorithm handling merge.
{A is set of active paths, C completed paths, ∅ = empty set, \ = set minus}
A← ∅, C ← ∅

p← starting null path
Simulate(p)
if p reached end of program then

C ← C ∪ {p}
else {p reached an unknown conditional branch}

A← A ∪ {p}
end if

while A not empty do
p← minimal progress path in A
A← A \ {p}
for all paths q with equal progress as p do

A← A \ {q}
p← merge(p, q)

end for
{Path p ends with a branch forcing a split}
for each possible branch target i do

pi ← copy of p
Simulate(pi) along target i
if pi reached end of program then

C ← C ∪ {pi}
else {pi reached an unknown conditional branch}

A← A ∪ {pi}
end if

end for
end while

wcet← maxp∈C p.wcet
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lead to the creation of yet another path, which later would result in an
additional merge operation. The total number of paths simulated, as well
as the number of merge operations, can in some cases grow in proportion
to the number of loop iterations done in the program. One example is a
loop with one unknown exit condition. The simulation of this loop would
produce one new path (the exit path) to simulate each iteration. All
these paths would, unless they reach the end of the program, be merged
resulting in an equal number of merge operations.

For each merge operation, one must union the content of all registers
and memory locations. This might be a quite slow process if the amount
of memory is large. However, it is possible to speed up this operation
considerably which we show in Chapter 4.

Another important issue is termination of the analysis. If the anal-
ysis encounters a loop that has an unknown exit condition it will not
terminate. We have not implemented any solution to this problem but
possible ways to handle it involve user interaction in some manner. For
example, by providing constant feedback to a user about the progress of
the analysis, the user can stop the analysis whenever the number of loop
iterations seems too high. Another solution, that has been proposed by
Gustafsson [Gus00], is to give a time budget before starting the analysis
(for example a program deadline). If the WCET estimate exceeds this
budget, the analysis can be stopped since the result is no longer interest-
ing.

2.5 Discussion: value domains and annotations

Ideally, the goal is to eliminate all infeasible program paths. The domain
of values we use, however, makes it sometimes impossible to correctly
analyze mutually exclusive paths. Consider for example the statements
in Figure 2.3a where b is unknown. Variable b will be unknown in both
conditions, forcing the simulation of four paths even if fun1() and fun2()
are mutually exclusive and the number of feasible paths are three. This
can cause an overestimation of the WCET.

A more serious problem with our simple domain is that it can fail to
convey information needed to terminate the analysis. If all exit conditions
of a loop are input data dependent, we get a completely unknown upper
bound on the number of iterations in the loop, and our WCET algorithm
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if (b < 100)
fun1()

if (b > 200)
fun2()

if (b < 100)
for (i = 0 ; i < b ; i++)
sum = sum + i;

(a) (b)

Figure 2.3: Example of (a) mutually exclusive paths and (b) indirect loop
bound.

will not terminate. For example, the loop in the program in Figure 2.3b,
where b is unknown input data, will never do more than 100 iterations
regardless of b. This fact cannot be represented with our simple domain,
and during the simulation the loop will get an unknown exit condition. A
similar problem can also arise when merging. The union operation used
when merging may cause information needed to bound a loop to be lost.

Both problems above would be solved by using a more complex domain
or by adding manual annotations that guide the analysis. Our approach
does not hinder us from extending the domain of values to, e.g., intervals.
However, our implementation of the method, which we evaluate in this
thesis, uses the simpler domain. As we will se in the experimental results
in Chapter 5, this simple domain performs remarkably well. Thus, for
the purpose of obtaining tigth estimates it may be unnecessary to use
a more complex domain, e.g., based on intervals of values [EG97]. On
the other hand, the use of the simple domain forces us to add manual
annotations in some cases. The implications of implementing another
domain is discussed further in Chapter 4.

It is clear that the analysis sometimes need support from manual
annotations. We distinguish between manual annotations that can affect
the safeness of the derived WCET estimates and annotations that only
guide the analysis. In our implementation, we have not added any support
for annotations that influence the safeness. Instead we suggest using
program modifications to add information in a safe way to a program. For
example, to add information about the infeasible path in the program in
Figure 2.3a, we can modify the program to explicitly carry the information
that b < 100:
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bsmall = 0
if (b < 100) {

bsmall = 1;
fun1()

}
if (bsmall == 0 && b > 200)
fun2()

To add an upper bound to the program in Figure 2.3b, we can add an
extra condition that does not depend on input data:

if (b < 100)
for (i = 0 ; i < b && i < 100 ; i++)
sum = sum + i;

When doing the experimental evaluation (see Chapter 5), we have
only done modifications on loop bounds to add information necessary for
termination. Information about infeasible paths have not been added.

The advantage with program modifications is that we will derive safe
estimates. Manual annotations could introduce errors that jeopardize the
estimated WCET. However, program modifications is not possible to use
if the program cannot be changed (lack of source code for example) so
manual annotations migth be needed as well. Ideally, we would like to
permit as flexible annotations as described by, for example, Park’s regu-
lar expression language [Par93] or the annotations possible in constraint
solving approaches [LMW95, PS97]. However, it is currently unclear if
this can be done and further research is needed to find out to what extent
annotations can be introduces. Currently, the prototype tool only imple-
ments a rudimentary support for annotations that guide the analysis. See
Chapter 4 for more information about this.

2.6 Related work

Previously presented methods that include automatic path analy-
sis [Alt96, CBW94, EG97, FHL+01, HSR+00, HW99, GL02, NP93, EY97]
are all based on similar concepts. To identify loop bounds and infeasible
paths one must look at possible values of variables and find dependencies
between variables and control flow instructions. This typically involves
some kind of symbolic analysis of the program. However, despite the sim-
ilarities, the methods still differ according to, for example, (1) the time
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complexity of the analysis, (2) the expressiveness of the symbolic analysis
used, and (3) whether the analysis is done for a high or low-level language.
The time complexity of a method is typically high if all iterations in a
loop are analyzed separately and low if the analysis is based on data flow
analysis or some other technique that do not examine all iterations of a
loop.

The symbolic execution method presented in this thesis has a high
time complexity since the method analyzes all iterations of a loop. The
domain used for the symbolic analysis is very simple since variables can
only have a known value or be unknown. Furthermore, the analysis is
done on the object-code (machine code) level. We will now compare this
to other approaches.

Other methods with high time complexity typically use more expres-
sive value domains. For example, the path analysis method proposed by
Ermedahl and Gustafsson [EG97, Gus00] is similar to our method but
their method works on the source code level instead of the object code
level and uses a domain that can represent split integer intervals. Also,
they focus only on deriving path information to be used later in a sep-
arate timing analysis. Compared to our approach, the more complex
domain can potentially eliminate a greater number of infeasible paths
and be more convenient to a user since constraints on the input data
can be easily expressed. The language level issue is more tricky. On the
source code level more high-level information is available and an analysis
is more portable between different instruction set architectures. On the
other hand, one can argue that on the object code level more low-level in-
formation is available and an analysis is more portable between different
high-level languages.

Another method with high time complexity is the one presented by
Altenbernd [Alt96]. It estimates the WCET by using a branch-and-bound
algorithm and the symbolic evaluation is done on the source code level
using a domain of value ranges. A similar symbolic evaluation is also
used by Stappert and Altenbernd [SA00] when analyzing programs with
no loops. There are also methods with high time complexity that are
based on partial evaluation. Gómez and Liu [GL02] transform Scheme
programs to time-bound functions. These rather complicated functions
are then partially evaluated to produce more simple time-bound functions
where infeasible paths have been eliminated. Nirkhe and Pugh [NP93] use
partial evaluation to transform a program into a less complex one that

24 CHAPTER 2. CYCLE-LEVEL SYMBOLIC EXECUTION

may contain fewer infeasible paths and simpler loop bounds.
Methods with low time complexity can be based on data-flow analysis,

which typically works close to the object code level. This is the case for
the method presented by Ferdinand et al. [FHL+01] which uses a domain
of integer intervals to analyze the values of processor registers and identify
infeasible paths. Healy et al. [HSR+00, HW99] present several algorithms
that can derive upper bounds on loops and detect infeasible paths. By
analyzing loop exit conditions, they can derive lower and upper bounds
on loop iteration counters. To identify infeasible paths they build local
arithmetic expression of each branch condition and then use a data-flow
algorithm to find dependencies between registers and branch conditions
and correlations between branches.

Chapman et al. [CBW94] combine program proof and WCET analysis.
They use a symbolic domain where values can be arithmetic expressions
to analyze programs written in the SPARK Ada language. A theorem
prover is used to identify infeasible paths among a set of basic paths. A
basic path represents at most a single iteration of a loop.

Finally, Ernst and Ye [EY97] use symbolic evaluation with arithmetic
expressions to find the branch conditions that depend on input data. This
is done to identify those parts of the program that have a single feasible
path.

Some interesting conclusions can be drawn from a comparison of our
method with other methods. First, all other methods use a more expres-
sive symbolic analysis, based either on integer intervals or arithmetic ex-
pressions. Thus, other methods have the potential of identifying a greater
number of infeasible paths. However, since our method analyzes all loop
iterations, it can perform well despite the simple domain. In fact, the
simple domain we use would be meaningless to use in an approach with
low time complexity since loop iteration counters would become unknown,
giving no information about the number of iterations done. Second, the
choice of language to analyze varies greatly. Our main reason for ana-
lyzing object code instead of source code is the close connection to the
timing analysis since the timing of instructions is typically more precisely
defined at the object code level. The close connection to the timing anal-
ysis is one of the key ideas with our approach and makes it possible to do
path and timing analysis simultaneously.

Another technique used to make the path analysis more flexible is
to express the estimated WCET symbolically as a function of, for ex-
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ample, the number of loop iterations. Several methods use this tech-
nique [CBW94, VHMW01, GL02, PB01, BB00]. There are also auto-
matic path analysis methods that target synchronous languages [KW98]
and hardware circuits [AS92]. A further discussion about infeasible paths
can be found in [HFL01].

An important question is how to combine automatic path analy-
sis with timing analysis. One approach is to do timing analysis be-
fore doing path analysis and do the WCET calculation as part of the
path analysis [Alt96, GL02]. This can avoid the need of transfer-
ring path information to a separate WCET calculation step. How-
ever, it is not clear if this approach is powerful enough to cope with
pipelined execution and cache memories. Another approach is to first
derive path information which is then later used in the WCET calcula-
tion [CBW94, EG97, FHL+01, HSR+00, HW99, EY97]. This approach
does not put any limits on the timing analysis but requires an explicit
representation of the path information. The approach taken in this thesis
avoids the need for an explicit representation of path information and still
makes it possible to incorporate pipeline and cache analysis. In the next
chapter, we will see how timing analysis is done and how it is integrated
with the path analysis.
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Chapter 3

Timing Analysis

The WCET algorithm in the previous chapter can estimate WCET for
hardware platforms with fixed instruction execution times. Thus, an
instruction-level simulation model extended to symbolically execute a pro-
gram with unknown input data suffices. In this chapter, we extend this
method to perform cycle-level symbolic execution in order to model the
timing of high-performance processors employing multiple-issue instruc-
tion execution and instruction and data caching.

In order to update the WCET properly during simulation, the sim-
ulator must of course be extended to model the timing of caches and
pipelines. In the context of caches, the simulator must model the impact
of cache misses on the execution time. And in the context of pipelines,
the simulator must account for the impact of structural, data, and control
hazards [HP96] on the execution time. With this capability, it is possible
to make an arbitrarily accurate estimation of the WCET of a given path
through the program.

A critical issue is how to carry out a merge operation. To do this,
the method must estimate the impact of the system state on the future
execution time. Such state information is exemplified by the identity of
the blocks contained in the caches, which affects future misses, and the
resources occupied by an instruction, such as data-path components and
registers, which affect future structural and data hazards. The merge
operation introduced in Section 2.4.1 must be extended to handle such
state information, which we will refer to as timing state.

To merge the timing state, we could use the same general principle
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as used when merging the content of memory locations; for all locations
where the timing state differs we assert a pessimistic value, such as un-
known, in the merged timing state. For example, in the case of caches,
unknown can be similar to a cache block being invalid, and when calculat-
ing the union of two cache timing states, all cache blocks whose identities
(i.e., memory tags) differ will be set to invalid. However, the introduction
of abstract values, like the unknown value, can introduce extra complex-
ity in the timing models. The basic merge algorithm described below
works without extending the timing state with abstract values. However,
in Section 3.5 we explain why abstract values like unknown can be useful
and why we include them for instruction and data cache analysis.

In the next section, we will introduce the basic timing merge approach.
We will concretely apply this method to a high-performance processor
whose timing model is introduced in Section 3.2. We then explain in
detail how the method is applied to model caching and pipelining in
Sections 3.3 and 3.4, respectively. Finally, in Section 3.6, we discuss
methods to reduce the possible pessimism introduced by the merge before
we relate our timing analysis approach to others in Section 3.7.

3.1 Timing merge approach

Consider two paths pA and pB that are to be merged. A path pA now
consists of the functional state, stateA, which is the content of registers
and memory, and the timing state, tA, the state of the timing model
which includes the estimated WCET so far. First, we assume that the
content of memory locations and registers has been merged according
to the principles stated in Section 2.4.1. Thus, we have created a new
merged path, pC , with a merged state, stateC , but still lacks the timing
state, tC . The remaining step is to merge the timing states, tA and tB,
into tC .

Our approach is based on the idea that if it was known in advance
which of the paths pA and pB that belong to the worst-case path through
the program, one could choose the timing state of that path when merging
and discard the timing state of the other path. Then, no pessimism would
be incurred on the final WCET estimate by the merge operation. The
problem is how to identify the worst-case path. It is not enough to just
compare the lengths, i.e., the current estimated WCET, of the two paths
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due to the fact that the timing state in each path can differ and thereby
cause different execution behavior in the future.

The solution is to not only compare the lengths of the two paths but
also compare the timing states of the two paths. Then, if one of the paths
is sufficiently longer than the other one, it can be guaranteed to be the
worst-case path. If no clear decision can be made, it is always possible
to force one of the paths to become the worst-case path by making it
sufficiently longer. This is done by adding a merge penalty to the current
estimated WCET. We will now take a more formal look on this solution.

As a starting point, we need to find out how the timing state tA or tB
influence the final estimated WCET. We cannot know this before having
analyzed the complete program. However, let us assume that when merg-
ing we set tC = tA and continue simulating the program using the path
pC along a single path until the end of the program. The final estimated
WCET will depend on the timing state tA and the path taken through
the rest of the program. Let us call the final estimated WCET, wcet tA(x),
where x is a parameter representing the path taken from the current loca-
tion to the end of the program. Starting the simulation with tB , we would
obtain a similar final estimated WCET, wcet tB (x). Figure 3.1 illustrates
the concepts introduced so far.

We want to pick the timing state that leads to the greatest final WCET
estimate. But, since we have not analyzed the whole program yet, we
cannot know which path x that leads to the greatest estimated WCET.
Furthermore, we have no knowledge of the absolute values of wcet tA(x)
or wcet tB (x). Nevertheless, we do know something. By comparing the
timing states tA and tB , we can estimate an upper bound on the maximum
difference between the final WCET estimates. Let us define dAB and dBA

as the maximum difference among all paths x:

dAB = max
x

(wcet tA(x)− wcet tB (x))

dBA = max
x

(wcet tB (x)− wcet tA(x))

The estimated upper bounds, which we will call ∆WCET (tA, tB) and
∆WCET (tB , tA), must fulfill:

∆WCET (tA, tB) ≥ dAB

∆WCET (tB, tA) ≥ dBA
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Merge location

End of program

Beginning of program

pA = 〈stateA, tA〉 pB = 〈stateB, tB〉

pC = 〈stateC , tA〉 pC = 〈stateC , tB〉

wcet tA(x) wcet tB (x)

Figure 3.1: Two paths pA and pB are being merged. The new merged
path, pC , contains the merged functional state stateC . If we continue
simulating pC along a path x we get a final estimated WCET of wcet tA
or wcet tB depending on which of the timing states, tA or tB , that is used
as a starting point.
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(d)(b)(a) (c)

Non overlapping Overlapping

wcet(x)

x

wcet(x)

x

t A

t B

wcet(x)
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t A
t B

wcet(x)

x

t B

t A t A

t B

dAB > 0dAB > 0dAB > 0 dAB < 0

dBA > 0dBA > 0dBA > 0dBA < 0

Figure 3.2: Four cases showing the final estimated WCET based on either
tA or tB as a function of the path taken through the rest of the program,
x.

How to really calculate such upper bounds on the future estimated
WCET difference is the key to our timing analysis approach and is the
central topic of the rest of this chapter. Basically, it is possible to esti-
mate the difference by instead of considering all paths x that exist in the
program from the current location to the end of the program, we extend
the set of paths to consider all possible sequences of instructions of arbi-
trary length. Thus, the maximum difference is estimated by considering
all possible combinations of future instruction sequences.

To better understand the meaning of these ∆WCET estimations, we
will now take a look at Figure 3.2. It shows a graph of wcet tA(x) and
wcet tB (x) for four different cases. In the first two cases, (a) and (b),
one of the timing states will always lead to a greater estimated WCET
regardless of which path x we choose. In these cases, either dAB or dBA

will be negative. In the last two cases, (c) and (d), the curves overlap
and both dAB and dBA will be positive. The difference in sign between
dAB and dBA give us a possibility to identify the timing state that will
result in the greatest final estimated WCET. This is done by also looking
at the signs of the upper bounds ∆WCET (tA, tB) and ∆WCET (tB , tA).
According to the signs of these upper bounds, we act according to the
following decision table:
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∆WCET (tA
, tB

)

∆WCET (tB
, tA

)

Action
> 0 ≤ 0 dBA ≤ 0 Choose tA. Discard tB.
≤ 0 > 0 dAB ≤ 0 Choose tB. Discard tA.
= 0 = 0 Equivalent. Choose either tA or tB.
> 0 > 0 Unsafe case. dAB and dBA are possibly > 0. Force one

timing state to become longer by adding a merge penalty
to the current estimated WCET.

This means that we discard the timing state of the short path and
continue the simulation using the timing state from the long path. The
unsafe case is handled according to which difference is the greatest:

• If ∆WCET (tA, tB) > ∆WCET (tB, tA), then tA is forced to become
longer by extending it with a merge penalty on the current esti-
mated WCET. The penalty to add is ∆WCET (tB , tA). This penalty
will increase ∆WCET (tA, tB) and decrease ∆WCET (tB, tA) so that
we end up in a safe case according to the table above.

• If ∆WCET (tB, tA) > ∆WCET (tA, tB), then tB is forced to become
the long path. The penalty to add is ∆WCET (tA, tB).

By adding a penalty we can compensate for the possible mistake we
are doing when discarding one of the timing states. This will make the
merge operation safe but will also introduce some pessimism in the final
estimated WCET. However, this pessimism will only be incurred for the
unsafe cases. When one path is clearly longer than the other one, no
pessimism will be added to the final estimate.

In order to make this algorithm useful, we must be able to calculate
the upper bound ∆WCET . To simplify this calculation, we split the
problem and treat each analysis of an architectural mechanism in sepa-
ration. Thus, we split the timing state t into PL, IC , and DC to analyze
the pipeline state, the instruction cache state, and the data cache state,
respectively, and to analyze the system, we calculate:

∆WCET (tA, tB) = ∆pipeline(PLA,PLB) +
∆IC(ICA, ICB) +
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∆DC(DCA,DCB) +
penA − penB

where ∆pipeline, ∆IC , and ∆DC are the contributions to the upper bound
regarding the timing state of the pipeline, the instruction cache and the
data cache, respectively. The expression penA − penB is also needed
to account for the possible difference in the merge penalty accumulated
from previous merges. A big contribution from ∆pipeline means that the
lengths of the paths differ considerably since the pipeline timing model is
responsible for holding the current cycle count, i.e., the estimated WCET
so far.

We will now demonstrate how to calculate the different contributions
to the upper bound ∆WCET . But first, we will present the hardware
system used for the demonstration, a high-performance processor that
uses many realistic features, and also define the timing state needed to
simulate and analyze the system.

3.2 Modeled architecture

The architecture used to demonstrate the timing analysis can be seen in
Figure 3.3. It consists of a multiple-issue pipeline, capable of in-order dis-
patch of two instructions each clock cycle, and separate instruction and
data caches. While the architecture is a subset of the PowerPC instruc-
tion set architecture—floating-point instructions are excluded—it never-
theless contains many of the key features critical for high-performance
processors such as pipelining and caching. We will now first describe the
architecture and then present the timing model used when simulating the
timing behavior.

3.2.1 Description

Instructions are fetched from the instruction cache and put into the
buffers in the instruction decode (ID) stage. From the decode stage, in-
structions are sent to the dispatch stage (DS) which in turn dispatches
instructions to the three different functional units: the load/store unit
(LSU), the integer unit (IU), and the multiple-cycle integer unit (MCIU).

At most two instructions in each cycle can be fetched from the in-
struction cache and put into the buffers of the ID-stage. For simplicity,
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CR0 − CR7
Condition reg. file

Integer Unit
IU

ID

MCIU

LSU
Load/Store Unit

DS
Insn. dispatchInsn. decode

2 instructions

R0 − R31
Integer register file

Multi−cycle Int. Unit

Instruction Cache Data Cache

Figure 3.3: Modeled architecture.

we model no control hazards and assume that a branch is handled ideally
by not incurring any penalty, i.e., instructions will be fetched from the
correct branch target in zero cycles. Instruction fetching will stall if the
buffers of the ID-stage are full or if the fetch causes an instruction cache
miss.

In the DS-stage, zero, one, or two instructions are dispatched each
cycle in program order. An instruction can not be dispatched if it needs
a resource which is currently busy or if an older instruction has not dis-
patched. Busy resources can be functional units (structural hazards) or
registers (data hazards). An instruction reserves its destination regis-
ter and if later instructions use this register they are stalled until the
first instruction can forward the result and release its destination regis-
ter. Instructions in the pipeline are moved forward as soon as possible;
if only one instruction is dispatched, instructions still advance so that at
least one instruction is fetched from the instruction cache in order for the
pipeline to dispatch two instructions during the next cycle.

All operands needed by an instruction are read from the register files
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or forwarded from another functional unit at dispatch time. There is one
result-bus from each unit handling the write-back of data into the register
file and the forwarding of data to another unit.

The load/store unit handles all loads and stores in an equivalent man-
ner as far as timing is concerned. A load or store access that misses in
the cache causes a new entry (tag and block) to be allocated in the cache.
Only one load or store is processed at a time. Normally, all LSU opera-
tions have a latency of 2 cycles, but if the access misses in the data cache,
the LSU unit will be busy during the fetching of the data including the
data cache miss penalty. Thus, a data cache miss blocks the load/store
unit but other units can still continue.

The integer unit handles all single-cycle ALU operations in addition
to the branch instructions. The multiple-cycle integer unit handles long-
latency operations such as multiply and divide in addition to instructions
involving any special purpose register in the PowerPC instruction set.
All multiple-cycle instructions have a latency of 4 cycles. Each instruction
thus has a fixed pipeline latency.

To keep the presentation and analysis simple, no contention exists
when reading and writing in the register file or on the result buses. Also,
the timing of all features external to the model (access to main memory)
is assumed to be ideal, i.e., no contention exists between fetching data
to the instruction cache and to or from the data cache. However, the
model introduced accurately accounts for the overlap of simultaneous
long-latency operations such as pipeline stalls and cache misses.

3.2.2 Timing model

To simulate the timing behavior of this system we use a timing model
consisting of three parts, the instruction cache, the data cache, and the
pipeline. An example of the timing state needed to keep track of execu-
tion time can be seen in Figure 3.4. For each instruction, the functional
behavior is first simulated, and then, the timing model is updated to
account for the execution time.

A cache state is represented by an array of block identities, tags,
showing how memory blocks are currently mapped in the cache or if a
block is invalid (denoted by “X”). In the figure, the instruction cache,
IC , is direct mapped and the data cache, DC , is 2-way set-associative.
However, this is only an example. In this thesis, principles for cache
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s IC (s)
0 0
1 1
2 18
3 19
4 0
5 0
6 1
7 1
8 1
9 X

10 X
11 X
12 18
13 18
14 X
15 X

DC (s, i)
s i = 0 i = 1
0 0 1
1 1 X
2 18 X
3 19 X
4 0 18
5 0 18
6 1 X
7 X X

Release
Resource time

r PL(r)
ID0 120
ID1 120
DS0 121
DS1 121
LSU 123

IU 122
MCIU 124

R0 124
R1 122
R2 123
R3 60
. . .

R31 100
CR0 109
CR1 109
. . .

CR7 109

Figure 3.4: Examples of instruction cache, IC , data cache, DC , and
pipeline, PL, timing states. A cache state is an array of block tags where
a tag of “X” means that the block is invalid. For set-associative caches,
i = 0 represents the youngest block in a cache set. The pipeline state
is a reservation table showing the latest release times for each pipeline
resource.
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configurations with arbitrary size and associativity will be covered.
The following notation will be used for referring to the tags in an

instruction cache or a data cache. For an m-way set-associative cache
with n sets, the timing state is represented by a 2-dimensional array,
IC (s, i) or DC (s, i), with size n×m. The tag IC (s, i) or DC (s, i) is then
tag number i in set s. For an LRU replacement policy, i.e., the least
recently used block is replaced when a cache miss occurs, the ordering of
tags in a set reflects their relative LRU status, i.e., tag i = 0 belongs to
the most recently used block and i = m − 1 to the least recently used
block, which is the one to replace next. To refer to all tags in a cache set,
we will use the notation IC (s) or DC (s). For direct mapped caches, we
will skip the last index and simply use IC (s) or DC (s).

The pipeline state is responsible for modeling the penalties incurred by
resource contention (structural hazards) and register dependencies (data
hazards). For our pipeline model, resource contention and dependencies
can be modeled using a pipeline reservation table, which records when
each resource (pipeline stage or register) is released. An example of such
a table can be seen in Figure 3.4. The ID- and DS-stages are divided
into two sub-stages, ID0, ID1 and DS0, DS1, since each stage can hold
two instructions at a time and each pipeline-stage buffer is treated as an
individual resource. If two instructions are present in the pipeline stage,
then both sub-stages are reserved. If only one instruction is present, then
only ID1 (or DS1) is reserved.

During simulation, the reservation table can be updated for each in-
struction at a time because all resources that the instruction requires
are known. First, the instruction and data cache accesses are simulated.
Then, the pipeline reservation table is updated to show when each re-
source is released. The current estimated WCET of the path is defined
as the time when the last resource is released in order to make a safe es-
timation. However, the accumulated merge penalty, i.e., the extra cycles
added in some cases to make a safe merge, must also be added. Thus,
the estimated WCET can be expressed as:

estimated wcet = max
r∈R

(PL(r)) + pen

where R is the set of all pipeline resources and pen is the merge penalty
accumulated from earlier merges.
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3.2.3 Handling unknown accesses

During estimation, the reference address of a memory access can be-
come unknown due to dependencies with unknown input data. Without
knowledge of the reference address, we cannot update the state of the
data cache properly. This can be solved in several ways. One solution is
to let the state of the data cache remain unchanged and add two cache
miss penalties [KMH96] — one for the possible miss and one for the pos-
sible replacement of some useful memory block. However, in line with our
handling of unknown store instructions in Section 2.3 where we map un-
predictable data structures to a certain region in memory, we can instead
use the approach of disabling caching for this memory region. Then, only
one cache miss penalty needs to be added. We develop this approach
further in Chapter 7.

3.3 Instruction and data cache analysis

In the following, we describe how to calculate the contribution from the
instruction and data cache, ∆IC and ∆DC , to the upper bound ∆WCET
as introduced in Section 3.1. Both instruction and data caches can be
described and treated using the same principles and we use the instruc-
tion cache to demonstrate the principles. We will begin showing how to
analyze direct-mapped caches and then extend the method to handle set-
associative caches, focusing on the least-recently used (LRU) replacement
strategy.

3.3.1 Direct-mapped cache

Let ICA and ICB be the timing state of the instruction caches corre-
sponding to two paths pA and pB , respectively. To calculate the upper
bound ∆IC(ICA, ICB), we must consider all cases where ICA may lead
to a greater number of future cache misses than ICB would. The worst
case is found if we imagine that all cache blocks resident in ICB but not
found in ICA will be needed in the future. Accesses to these blocks would
result in cache misses in ICA but cache hits in ICB. To find the total
number of extra cache misses possible from ICA compared to ICB , we
go through all cache blocks and compare the tag in ICA with the tag in
ICB and determine the number of entries where they differ. This number



3.3. INSTRUCTION AND DATA CACHE ANALYSIS 39

is then multiplied by the cache miss penalty to form the contribution to
the upper bound ∆IC .

Formally, ∆IC for a direct-mapped instruction cache can be expressed
as:

∆IC(ICA, ICB) = PIC

n−1∑
s=0

c(s)

where PIC is the instruction cache miss penalty, n is the number of cache
sets (blocks), and c(s) is defined by:

c(s) =

{
1 if ICA(s) 6= ICB(s) and ICB(s) 6= invalid
0 otherwise

where ICA(s) and ICB(s) denote the cache tag for the block in set s. We
get a contribution if the tags differ between cache blocks in the two cache
states, but not if the cache block in ICB is invalid. Then, it is impossible
for ICA to cause any additional misses in the future.

3.3.2 Set-associative cache

To derive the upper bound ∆IC for set-associative caches, we consider
again the timing state of two instruction caches, ICA and ICB, that are to
be merged. We will begin by constructing a pessimistic expression for ∆IC

and then refine it based on the characteristics of the LRU replacement
algorithm.

We want to estimate the number of extra cache misses possible from
ICA compared to ICB. A pessimistic expression can be obtained by
extending the expression for direct-mapped caches in a straight-forward
way. Instead of making the comparison for only one tag in the set, we
now must consider all tags in a set. If any tag in a set is found to differ
between ICA and ICB we assume that this can make all tags for blocks
belonging to the same set differ. Thus, for an m-way set-associative
instruction cache with n sets, ∆IC can be expressed quite similarly to the
direct-mapped case:

Pessimistic ∆IC(ICA, ICB) = PIC

n−1∑
s=0

mc′(s)
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i 0 1 2 3 4 5 6 7
ICA(s, i) 10 11 12 14 4 15 16 17
ICB(s, i) 10 11 12 3 14 15 16 x

Figure 3.5: Example of cache states for one set s in an 8-way cache. A
tag “x” means that the block is invalid. i = 0 is the most recently used
block.

where c′(s) now indicates if sets differ with respect to at least one tag as
defined by:

c′(s) =

{
1 if ICA(s, i) 6= ICB(s, i) and ICB(s, i) 6= invalid, for any i
0 otherwise

This expression is often overly pessimistic and in the rest of this sec-
tion we will show how to make a more accurate calculation. To begin,
let us study the example in Figure 3.5. This figure shows an example
cache state for a single set in an 8-way associative cache. In the example,
ICA(s, i) 6= ICB(s, i) for both i = 3 and i = 4. This makes c(s) = 1
and the pessimistic expression above would count this as 8 possible extra
cache misses. However, this is quite pessimistic. In reality, only 3 extra
cache misses can occur from ICA compared to ICB . To see how this is
possible, we will now first present an algorithm that calculates the num-
ber of extra misses by constructing a worst-case access pattern. Then,
guided by a proof of this algorithm we will construct an alternative ex-
pression to calculate the number of extra cache misses, which is the one
we use in our implementation.

A worst-case access pattern is a list of future accesses targeting a
specific cache set s that causes the maximum number of misses for cache
set s in ICA, compared to the same cache set in ICB . All accesses in
the list refer to distinct memory blocks and the algorithm we will present
finds one example of such an access list. The constructed list consists
of at most m accesses since after m unique accesses both cache states,
ICA(s) and ICB(s), will become identical.

The algorithm is presented in Figure 3.6. In each iteration an access
is added to the list and the effect on the cache state of making this access
is simulated. However, the original cache state must not be destroyed.
Therefore, the update is done to SA and SB , which are initialized as copies
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# Construct worst-case access list, l, for set s.
# x(s) is the number of extra misses for this cache set.

SA = ICA(s)
SB = ICB(s)
x(s) = 0
while SA 6= SB

a = a block in SB that do not exist in SA

if a block a was found then
add access targeting a to l
update SA and SB with new access
increase x(s) by 1

else
add arbitrary access targeting a new block to l
update SA and SB with new access
# (will cause a miss for both SA and SB)

end for
end while

Figure 3.6: Worst-case access pattern algorithm for LRU replacement.
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of ICA and ICB. In Figure 3.7 the algorithm is applied to the example in
Figure 3.5. In iteration 1, SB (the copy of ICB) is found to have a block
with tag 3 that does not exist in SA. An access to this memory block is
added to the access list and the number of extra misses is incremented
since this access would miss according to SA but not according to SB.
In the next iteration, the cache states have been updated with this new
access with tag 3, and no more blocks are found that only exist in SB

and not in SA. Thus, an arbitrary access is added that does not incur
any extra miss. When the cache states are updated with this new access,
the oldest block in each cache state is replaced. This makes it possible,
in iteration 3, to add the block with tag 16, which has been replaced
from SA, to the access list. The algorithm continues for one iteration
more, adding the block with tag 15 to the access list since this block was
replaced in SA in the previous iteration. Finally, the cache states are
equal and the algorithm terminates. The total number of extra misses
that ICA(s) can cause compared to ICB(s) is found to be 3.

Theorem 3.1 The access pattern created by the algorithm in Figure 3.6
is a worst-case pattern.

Informal proof Being a worst-case pattern means that no other se-
quence of accesses can make the number of extra misses from ICA(s)
compared to ICB(s) to become greater. To prove this we look at all
blocks present in ICB(s). To count as an extra miss, an access must
reference a block present in ICB(s) and not in ICA(s). This can be
accomplished in two ways:

1. An access to a block in ICB(s) that does not exist in ICA(s) must
clearly count as an extra miss and also be included in the worst-case
pattern. This case is handled by the algorithm in the then clause
of the if statement.

2. An access to a block in ICB(s) that also exists in ICA(s) can be
made to cause an extra miss if the block can be replaced earlier in
ICA(s) than in ICB(s). This case is discovered by the algorithm
by forcing a replacement of one block in each iteration. The else
clause guarantees that a block is being replaced in each iteration
by adding an arbitrary new access. Furthermore, if a block is being
replaced in ICA(s) but is still left in ICB(s), the then clause will
discover this and count it as an extra miss.
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i 0 1 2 3 4 5 6 7
SA(i) 10 11 12 14 4 15 16 17
SB(i) 10 11 12 3 14 15 16 x

1. Access to block 3 is added. Access list: {3}. x(s) = 1.

i 0 1 2 3 4 5 6 7
SA(i) 3 10 11 12 14 4 15 16
SB(i) 3 10 11 12 14 15 16 x

2. Arbitrary access added. Access list: {3, a}. x(s) = 1.

i 0 1 2 3 4 5 6 7
SA(i) a 3 10 11 12 14 4 15
SB(i) a 3 10 11 12 14 15 16

3. Access to block 16 added. Access list: {3, a, 16}. x(s) = 2.

i 0 1 2 3 4 5 6 7
SA(i) 16 a 3 10 11 12 14 4
SB(i) 16 a 3 10 11 12 14 15

4. Access to block 15 added. Access list: {3, a, 16, 15}. x(s) = 3.

i 0 1 2 3 4 5 6 7
SA(i) 15 16 a 3 10 11 12 14
SB(i) 15 16 a 3 10 11 12 14

SA = SB ⇒ stop. Final list: {3, a, 16, 15}. Total number of extra misses:
x(s) = 3.

Figure 3.7: Applying the worst-case access pattern algorithm to the ex-
ample in Figure 3.5. In the list, only the tag-part of an address is included.
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Thus, the algorithm finds the worst-case number of extra misses pos-
sible from ICA(s) when compared to ICB(s). �

The worst-case pattern algorithm can be used to calculate an upper
bound ∆IC that is as tight as possible by calculating the number of extra
misses, x(s), for each cache set. The upper bound is given by:

∆IC(ICA, ICB) = PIC

n−1∑
s=0

x(s)

Before we end this section, we will present an alternative expression to
calculate the upper bound. This expression is the one we have based our
implemention on and can be more convenient and efficient to implement
since it does not need to update any cache state.

The proof above can be translated to an expression that tells us if a
block in ICB will give rise to an extra miss. The key observation needed
is that a block, b, in ICB, can be replaced earlier in ICA than in ICB if
there exists another younger block in ICA that does not exist among the
blocks younger than b in ICB . In other words, all blocks younger than b
in ICA must also exist in ICB and be younger than b in ICB , in order
for block b to survive in the worst case. Formally, the upper bound ∆IC ,
can now be expressed as:

∆IC(ICA, ICB) = PIC

n−1∑
s=0

m−1∑
i=0

c(s, i)

where c(s, i) is defined by:

c(s, i) =




1 if there exists no block k such that ICA(s, k) = ICB(s, i)
and ICB(s, i) 6= invalid

1 if there exists a block k such that ICA(s, k) = ICB(s, i)
and ICB(s, i) 6= invalid
and if there also exists a block g < k such that
ICA(s, g) 6= ICB(s, h) for all h < i

0 otherwise

An example of applying this expression to the previous cache state
example from Figure 3.5 can be found in Figure 3.8. The expression
c(s, i) will be 1 for all blocks in ICB(s) that will cause extra cache misses
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i 0 1 2 3 4 5 6 7
ICA(s, i) 10 11 12 14 4 15 16 17
ICB(s, i) 10 11 12 3 14 15 16 x

c(s, i) 0 0 0 1 0 1 1 0

Figure 3.8: Applying the alternative expression to the example in Fig-
ure 3.5.

when accessed, i.e., block 3, 15, and 16, which are the same blocks as
found by the algorithm above. Block 3 only exists in ICB(S) and block
15 and 16 can be replaced earlier in ICA(s) than in ICB(s) due to block
4 in ICA(s). However, this alternative expression gives no information
about in which order to access the blocks in order to trigger this worst-
case scenario.

The alternative expression is the basis for our implementation. How-
ever, we have improved it further and the final algorithm is presented in
the implementation chapter, Chapter 4.

3.4 Pipeline analysis

To finally be able to calculate the upper bound ∆WCET as introduced
in Section 3.1, we need also to define how to calculate the contribution
from the pipeline state, ∆pipeline.

Consider the timing state of the pipelines, PLA and PLB, correspond-
ing to the two paths pA and pB , respectively (see the example in Fig-
ure 3.4). We want to find an upper bound, ∆pipeline, on the difference in
the final estimated WCET that PLA can lead to compared to PLB, and
must in this case consider all future hazards that PLA can lead to which
PLB cannot lead to. Hazards are taken care of by updating the release
time of a resource to indicate when it will be available. Therefore, by
examining each resource and compare the release times in PLA and PLB ,
we can find out how much each resource can influence the future execu-
tion. Using this, we can construct an upper bound for the pipeline by
picking the maximum difference found. This can be expressed as follows,
where R is the set of all resources in the pipeline reservation table and
PLA(r) and PLB(r) are the release times for resource r:
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Resource Release time
r PLA(r) PLB(r) PLA(r)− PLB(r)

ID0 120 100 20
ID1 120 100 20
DS0 121 101 20
DS1 121 101 20
LSU 123 113 10

IU 122 102 20
MCIU 124 94 30

R0 124 94 30
R1 122 102 20
R2 123 113 10
R3 94 99 -5
. . .

R31 100 100 0
CR0 109 89 20
CR1 109 89 20
. . .

CR7 109 89 20

Figure 3.9: Example of two pipeline states and the difference in release
times for each resource.

Pessimistic ∆pipeline(PLA,PLB) = max
r∈R

(PLA(r)− PLB(r))

We call this the pessimistic ∆pipeline since by only looking at the re-
lease times we can get a very pessimistic upper bound. As an example,
let us compare the two pipeline states presented in Figure 3.9. For this
example, we get ∆pipeline(PLA,PLB) = 30 due to the difference in re-
lease times for resources MCIU and R0. This is overly pessimistic since,
for PLB , the earliest cycle in which a future instruction can use these
resources is 103 and not 95 as the release time would suggest. This is
explained by the fact that a future instruction must use the ID and DS
resources before being able to use the MCIU and R0 resources. Therefore,
we really want to look at the earliest use time for each resource that is
possible for one or several future instructions. The earliest use time for a
resource r can be calculated by taking the maximum of the release times
of the resource r and the resources in previous stages of the pipeline. The
pessimistic expression above can now be improved by instead of PLA(r)
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=  Earliest possible use cycle

cycles

cycles

110100

...
R3
R2
R1
R0

MCIU
IU

LSU
DS1

ID1
DS0

ID0

90 120110100

...
R3
R2
R1
R0

MCIU
IU

LSU
DS1

ID1
DS0

ID0

90

22 cycles difference

120

PLA

PLB

Figure 3.10: Illustration of earliest use times for the example in Figure 3.9.
The earliest use times for the functional units and the registers are at least
one cycle later than the earliest use time for the DS-stages.

and PLB(r) use the earliest use times, uA(r) and uB(r). We get:

∆pipeline(PLA,PLB) = max
r∈R

(uA(r)− uB(r))

Continuing with the example, Figure 3.10 illustrates how the earliest
use times are calculated for the two pipeline states PLA and PLB. Based
on the difference in earliest use time, we now get: ∆pipeline(PLA,PLB) =
22.
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3.5 Abstraction

Our method of merging timing states does not require any abstract state
values, like for example the unknown used for memory and register val-
ues in Chapter 2. However, using no abstraction can cause great over-
estimation of the WCET. This is the case when trying to solve the initial
state problem, i.e., what initial timing state should we assume when doing
a WCET estimation?

Without the use of abstractions, we can simply choose an arbitrary
initial timing state, ti, and then use this as a starting point for our sim-
ulations. The estimated WCET we derive is valid based on this initial
timing state and we call it wcet ti . Assume now that after doing a WCET
estimation, we want to use the estimate in a context where the initial
timing state is not ti but instead tj . Then, we can safely calculate a new
WCET estimate by pretending that we have an initial merge point that
merges ti and tj but always add a merge penalty to ti. Thus, the new
WCET estimate, wcet tj , can be obtained by:

wcet tj = wcet ti + ∆WCET (tj, ti)

The reasoning above can be generalized to calculate a WCET estimate
that is valid for all possible initial states. This is what we generally want
to calculate and by considering all possible timing states tj , it can be
obtained as:

wcet = wcet ti + max
tj

(∆WCET (tj, ti))

Now, depending on the initial timing state ti, the over-estimation can
be more or less severe. We will now see how the use of abstraction can
reduce this over-estimation.

Consider the initial timing state of an instruction cache, IC i. If
this initial cache contains specific memory blocks, then the penalty
∆IC(IC j , IC i) can be high for an arbitrary IC j . However, if IC i only
contains invalid blocks then ∆IC(IC j , IC i) = 0 for all IC j (according
to the definition of ∆IC in Section 3.3). The invalid state in a cache
represents the worst-case state in our cache model. However, in more
complex cache models (for example, using the copy-back strategy), the
worst-case can be something other than invalid. So, to be more general
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we actually want to introduce a state, unknown, for a cache block that
represents this worst-case. The state unknown should be defined so that
∆IC(IC j , IC i) = 0 for all IC j where IC i is unknown for all blocks.

To summarize, by setting the initial state to unknown values, we can
eliminate the added penalty and directly derive an estimated WCET valid
for all possible initial states. On the other hand, by setting the initial state
to unknown, the estimated WCET can increase. For example, an invalid
cache state will probably result in more cache misses when compared
to many other initial cache state. Thus, abstraction is only meaningful
when the typical increase in final estimated WCET is smaller than the
eliminated penalty.

We use abstraction in the instruction and data cache timing models
but not in the pipeline model. For cache memories, abstraction is a gain
whenever the analyzed program does not use the whole cache, which is
often the case. However, for pipeline models, the execution will typically
influence all timing state. This makes it meaningless to introduce abstract
state values. For our cache model, we assume that an invalid cache state
is the worst-case. This makes it unnecessary to introduce any extra state
bits in the cache model. Also, we always assume that the initial pipeline
state is a flushed pipeline. This is a safe assumption since we define the
estimated WCET to be the last release time among all pipeline resources.

3.6 Reducing the worst-case penalty

We have now seen that the merge operation can be used to produce a
safe estimated WCET. A remaining question is how tight the estimate
will be. This depends both on the timing model and the merge operation.
The timing model can cause over-estimation by pessimistic assumptions,
for example, assuming the highest latency for a variable-latency instruc-
tion when input data is unknown. However, this over-estimation can not
easily be reduced. The merge operation can cause over-estimation by
adding a merge penalty to the final estimated WCET. This penalty can
typically become high if a program contains multiple paths to merge and
the timing states of the paths are very different to each other but yet be-
ing equal in length. The experimental results in Chapter 5 show that the
merge operation performs well for the programs that have been studied.
Nevertheless, we will now present two methods, speculative modifications
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and delayed merge, that can reduce the merge penalty. These methods
have not been implemented since the need did not arise. However, it is
fairly easy to construct program examples where the methods would be
useful.

3.6.1 Speculative modifications

The method of speculative modifications involves making modifications
to the timing state of the path chosen as the long path when merging,
in a way that promises to reduce the final estimated WCET. The idea
is based on the fact that when a merge penalty is to be added we can
permit an equivalent amount of changes to the timing state.

As an example, let us consider a loop containing two paths pA and
pB that are being merged in each iteration and where the merge causes a
substantial penalty to be added. Assume that in one of the paths pB an
access, A, with cache tag a is made that affects cache set s in a direct-
mapped data cache. This cache set is not accessed anywhere else in the
program and no other accesses is made in the loop. Consider now the
data cache states in the two paths that are to be merged, DCA and DCB,
and the pipeline states, PLA and PLB . Assume that path pA is chosen
as the long path and that the total penalty, which is assumed to be the
sum of ∆DC and ∆pipeline, is calculated as follows in each iteration:

cache access A miss hit
∆DC(DCB,DCA) 0 0

∆pipeline(PLB,PLA) 10 0
Total penalty 10 0

Thus, if access A causes a cache miss, a penalty of 10 cycles must be
added. The unfortunate case here is that access A will cause a miss in
each iteration since the cache set vill always be invalid when the access
is made. This is because the cache state in the long path DCA(s) = X
will be kept and used in the next iteration. The penalty incurred can be
relatively high if the paths are short.

To reduce the penalty, we can do a speculative change of DCA(s) from
being invalid, “X”, to being equal to DCB(s) = a. If this modification
is done after the first iteration, access A will experience a cache hit in
each of the following iterations and no penalty will accumulate. The
modification can be done safely by adding a penalty of 10 cycles to pA.
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However, the added merge penalty will then be reduced by 10 cycles so
the total penalty added for the first iteration is the same as before the
modification.

In the case above, the modification to do was quite easy to figure
out. Just check all blocks that differ between DCA and DCB. If a block
DCA(s) is invalid and DCB(s) is not, then DCA(s) should be modi-
fied. However, for a more general approach we must be able to detect
changes in the timing state. Then, if the state DCB(s) has changed but
not DCA(s) since the two paths pA and pB split up, we should modify
DCA(s). Tracking changes is quite simple to do and in our implemen-
tation we already have preliminary support for this due to the fact that
we keep track of changed memory content to speed up the merging (see
Chapter 4).

3.6.2 Delayed merge

Another way of reducing the merge penalty is to use delayed merge. This
means that we delay the merging and continue simulating past an un-
known conditional branch until the next unknown conditional branch. In
this way, the timing states are made more similar which can lead to a
reduced penalty. The price we pay is an increased number of paths to
simulate and an increased number of merge operations.

The principle is illustrated in Figure 3.11. By delaying the merge, the
number of paths are allowed to increase exponentially. For example, by
delaying the merge by 2 unknown conditional branches we must simulate
4 times as many paths and do 4 times as many merges compared to when
doing an non-delayed merge. The key to the succes of this method is the
way paths to be merged are chosen. For example, consider the paths to be
merged when delay = 2 in Figure 3.11. We choose to merge two paths pA

and pB , where pA and pB have followed the non-taken and taken branch
target of branch 0, respectively, and where both paths have followed the
same branch targets of branch 1 and 2. After branch 1, the timing states
in both paths are being updated with the same instruction execution
sequence. This makes the timing states in the two paths to become more
similar to each other which will reduce the merge penalty.

The delayed merge has not been implemented but it would only re-
quire a relatively minor change of the WCET algorithm presented in
Section 2.4.2. Also, no evaluation has been done to see how much the
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delay = 1

MergeMerge

Branch 0

Branch 1

Branch 2

Branch 0

Branch 1

Branch 2

Branch 3

Merge Merge

MergeMerge

delay = 2

Merge

delay = 0

Branch 0

Branch 1

Figure 3.11: Delayed merge. Instead of merging directly at every un-
known conditional branch, the paths are allowed to multiply. Then, paths
with similar recent history are merged.
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merge penalty can be reduced using this method.

3.7 Related work

The main difference with the WCET estimation approach presented in
this thesis compared to other approaches is the strong focus on doing
accurate timing analysis. This accurate timing analysis is accomplished
by a close integration of path and timing analysis but also by the analysis
of all loop iterations in a loop. The largest gain from an analysis of all
iterations is related to data cache analysis and we will defer that topic to
Chapter 7. In this section, we will demonstrate the gains possible from
an integrated analysis and compare with other methods.

As a basis for our comparison, we will use the example program shown
in Figure 3.12. It consists of a loop containing two if-statements, one with
a known condition a > 0 and one with an unknown condition b > 0. Each
block in the if-statements contains a memory access instruction. Also, the
memory accesses made in the blocks at line 6 and 8 are assumed to cause
a conflict with each other in the asummed direct-mapped cache. The
same is assumed for the accesses made at line 11 and 13. One of the two
possible paths in each if-statement is always longer than the other path
even if a cache miss occurs when accessing memory.

For this example, an integrated approach will estimate the WCET as
explained in Figure 3.13 (we assume that only blocks A,B,C, and D con-
tribute to the WCET). Thus, an integrated approach can really find the
actual WCET. Non-integrated approaches can overestimate the WCET
due to mainly two reasons related to cache analysis. The first reason is
due to the infeasible path present in the first if-statement—the else clause
will never be executed. Information about infeasible paths is not always
taken into account when doing cache analysis. The other reason is due
to a separation of the cache analysis from the calculation of the WCET.
We will now examine to what extent other approaches can handle the
example program.

3.7.1 Constraint solving approaches

One popular approach used by many research groups is to use constraint
solving techniques to estimate the WCET. The WCET is estimated by
maximizing an algebraic expression representing the execution time under
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1 a = 1
2 b = unknown input
3
4 for (i = 0 ; i < 1000 ; i++) {
5 if (a > 0)
6 A (accesses memory at 0x0500, cache set 5, cycles: 20/30)
7 else
8 B (accesses memory at 0x2500, cache set 5, cycles: 40/50)
9
10 if (b > 0)
11 C (accesses memory at 0x0800, cache set 8, cycles: 20/30)
12 else
13 D (accesses memory at 0x2800, cache set 8, cycles: 40/50)
14 }

Figure 3.12: Example program that profits from an integrated analysis.
The execution time for each block in the if-statements is expressed as
X/Y, meaning the number of cycles when the memory access causes a
cache hit or miss, respectively.

wcet = 30 + 50   +   999 x ( 20 + 40)

First iteration Remaining iterations

Block A
cache miss

Block D
cache miss

Block A
cache hit

Block D
cache hit

Figure 3.13: The WCET for the example program in Figure 3.12. Cache
misses are assumed for the first iteration.
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a set of constraints. The constraints provide a flexible way to take into
account path information from a separate automatic path analysis [EE00]
and we will in this discussion assume that such a path analysis is included.
One of the first examples of this approach is the method presented by Li
et al. [LMW95, LMW96]. They add cache analysis by including cache
miss penalties into the execution time expression and by adding con-
straints that model conflicting accesses to the cache. The way they add
cache analysis actually makes this into an integrated approach and their
method would also find the actual WCET for our example program. The
same is true for the cache analysis approach presented by Ottosson and
Sjödin [OS97]. They extend a basic constraint solving approach [PS97]
with pipeline and cache analysis. Instead of adding extra constraints
to model cache conflicts, they extend the execution time expression to
include effects over consecutive basic blocks1 in the program.

While both of these constraint solving approaches perform well for
our example program, they can suffer from complexity problems. For
some fairly simple programs and normal cache architectures, analysis
times are reported to be in the order of several minutes [OS97] or sev-
eral hours [LMW96]. Although better constraint solving techniques can
improve this situation, these approaches are still quite complex to use.
To model an architectural mechanism, one must be able to convert its
timing behavior into an algebraic expression. It is not really clear how
easy these approaches can be extended if one wants to model a more
detailed timing behavior. The complexity issue for an integrated con-
straint solving technique is probably the main reason that several other
methods have been proposed that separate the cache analysis from the
constraint solving phase. For example, Engblom [Eng02] further extends
the approach of Ottosson and Sjödin [OS97] to handle pipeline effects
over an arbitrary number of consecutive basic blocks. He suggests that
cache analysis should be done separately to avoid the risk of a too long
analysis time.

Several methods include cache analysis as a separate phase. The cache
analysis presented by Ferdinand et al. [FW99] is based on data flow anal-
ysis (abstract interpretation). For our example program, this analysis
would result in cache misses for the blocks A and D in all iterations, thus

1A basic block is a sequence of consecutive instructions in which flow of control
enters at the beginning and leaves at the end without halt or possibility of branching
except at the end [ASU86].
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overestimating WCET by a factor of: (30 + 50)/(20 + 40) = 1.33. There
are two reasons for this: (1) the cache analysis does not take into account
information about the infeasible path and therefore must assume that
the accesses from blocks A and B conflict, and (2) the cache analysis is
done before we find out that block C never can be part of the worst-case
path through the program. Thus, accesses from blocks C and D must be
assumed to conflict as well. This is an example of a completely separated
cache analysis. An interesting hybrid approach has been presented by
Wolf and Ernst [WE00]. They do a kind of data flow analysis where the
unit of analysis is extended from basic blocks to larger segments of the
program that contain only a single feasible path. For our example pro-
gram, their method would probably be able to treat the first if-statement
as a single feasible path segment and therefore would treat the access
from block A as a cache hit during all but the first iteration. However,
the cache analysis seems to be separated from the WCET calculation
so the access from block D must be assumed to be a cache miss. The
overestimation will then become a factor of: (20 + 50)/(20 + 40) = 1.17.

The methods by Ferdinand et al. [FW99] and Wolf and Ernst [WE00]
serve as good examples of the fact that the degree of separation can differ
between different cache analyses. Recently, Ferdinand et al. [FHL+01]
combine cache analysis with pipeline analysis in order to analyze the
Motorola ColdFire microprocessor. However, the degree of integration
is not really clear and it is hard to tell if they really do an integrated
analysis or not.

3.7.2 Other approaches

There are numerous other approaches that are not based on constraint
solving. Again, we can find examples of more or less integrated methods.
The method proposed by Lim et al. [LBJ+94] and Kim et al. [KMH96] is
an example of an integrated method that adds cache and pipeline analysis
to the timing schema approach presented by Shaw [Sha89]. They do
cache and pipeline analyses for each basic block in a program and then
concatenate the results from each basic block into timing information
regarding longer paths. Inside loops, they use a prune operation to discard
paths that are guaranteed to be shorter. As presented, the method does
not include any possibility of incorporating path information. However,
we can probably assume that this can be included at least by means
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of manual annotations. Thus, for our example program, the method
would correctly assume a cache hit for the blocks A and D, resulting in
no overestimation. Still, the approach can suffer from inaccurate timing
analysis because of the concatenation approach. When concatenating
the timing behavior of two basic blocks, one will always run the risk of
loosing precision compared to when simulating the timing behavior of the
two basic blocks.

The approach presented by Healy et al. [HWH95] and White et
al. [WMH+97] is one of the first examples of a separated approach for
cache analysis. They use static cache simulation [Mue00] to classify cache
accesses. This is the technique that inspired Ferdinand et al. [FW99] when
constructing their cache analysis. Thus, the overestimation: 1.33 is the
same, representing a complete separation of path analysis, cache analy-
sis, and WCET calculation. We assume that the automatic path analysis
presented by Healy and Whalley [HW99] succeeds to find the infeasible
path in the first if statement.

Another example of a separated approach is the one presented by
Colin and Puaut [CP01, CP00]. Besides pipeline and cache analysis,
they also include a branch prediction analysis. All analyses are done sep-
arately and then later combined to calculate the WCET. The infeasible
path in our example program can be eliminated by a manual annotations.
However, since the analyses are done separately, we will still get an over-
estimation of 1.33 as previously explained. Finally, the method proposed
by Stappert and Altenbernd [SA00] is also a separated approach. They
only analyze straight-line code without any loops but include an auto-
matic path analysis. The overestimation will be 1.33 for this method as
well.

To sum up, the WCET estimation method presented in this thesis is
one example of an integrated analysis. However, when regarding timing
analysis, it has the potential of doing a more accurate analysis than other
methods. In Chapter 5, we will evaluate the path and timing accuracy of
the symbolic execution method based on the prototype tool that will be
described in the next section.
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Chapter 4

Implementation

In this chapter, we will describe how we have implemented the WCET
algorithm presented in Chapter 2 and the timing merge operation pre-
sented in Chapter 3. The tool we have constructed has been used to
experimentally evaluate our ideas and the results from this evaluation is
presented in the next chapter. The main goal when implementing the
WCET method has been to make a tool that proves that the principles
presented in this thesis can be feasibly implemented. This means that
many aspects are lacking. For example, tool performance issues have
only been given moderate consideration, the user interface is lacking, and
the tool is not very portable to other platforms. Nevertheless, it provides
a good example of how an implementation can be done and the issues
that need to be solved.

To implement the WCET estimation method, we have extended an
existing instruction-level simulator, PSIM [Cag], with the capability of
handling unknown values and by adding the WCET algorithm described
in Section 2.4.2 to control the path exploration and merging. An overview
of the system can be seen in Figure 4.1 and in the rest of this chapter
we will describe in more detail the implementation of the different parts
of the tool. The next section focuses on the WCET algorithm. Then,
in Sections 4.2 and 4.3, we explain how the PSIM simulator has been
extended and how some issues regarding the implementation of merging
work. Finally, in Section 4.4, we define the concept of path progress
before we end the chapter in Section 4.5 by discussing the strong and
weak aspects of the tool.
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4.1 WCET algorithm

The WCET algorithm is built around the central data type holding the
list of uncompleted paths. Each of these paths represents a simulation of
a part of the program from the beginning of the program to some place
in the middle of the program at a conditional branch whose outcome
is unknown. To be able to continue the simulation of a path, a path
contains a complete state of the system, i.e., the register and memory
content, and the state of the timing model. Furthermore, each path
contains information about the progress of the path, which is mainly a
record of how many loop iterations that have been done.

To continue the simulation, the path that has made the least progress,
a minimum progress path, is selected. The system state of this path is
copied to the state of the PSIM simulator and then the simulator is told
to run. The simulator continues simulating until an unknown conditional
branch is found or the end of the program is reached. When an unknown
conditional branch is found, the simulator state is copied back to create
two new paths, pn and pt. The unknown condition for the branch instruc-
tion in the paths pn and pt is set so that the branch will be non-taken
and taken, respectively, whenever the simulation of the paths is contin-
ued. Finally, a new path is chosen for simulation. If two paths are found
to have similar progress, equal progress paths, i.e., they have passed all
loop headers an equal number of times and are at the same place in the
program, these paths are merged before continuing. For performance rea-
sons, the system state is never really copied to and from the simulator,
but instead, pointers are copied. This makes the switch from simulating
one path to another path quite fast.

To handle the update of the path progress information (see Sec-
tion 4.4) and to support collecting statistics and doing experiments, we
have added the possibility to register a callback-function on an arbitrary
instruction address. Whenever the simulator fetches an instruction from
such an address, the callback-function is called before continuing the sim-
ulation. This has proven to be a convenient way to interact with the
simulator. For example, a trace dump to a file can be started when the
simulator enters a specific region. Also, it is possible to flush or change
the timing model at an arbitrary location, used, for example, to do timing
analysis of single functions.



4.1. WCET ALGORITHM 61

W
C

E
T

al
go

ri
th

m

C
al

lb
ac

k
U

pd
at

e 
pa

th
 p

ro
gr

es
s

or
 p

er
fo

rm
 c

om
m

an
d

T
im

in
g

m
od

el
st

at
e

Pa
th

 p
ro

gr
es

s
in

fo
rm

at
io

n

an
d

R
eg

is
te

r

m
em

or
y

E
xt

en
de

d

PS
IM

co
nt

en
tPa

th
 1

Pa
th

 2

Pa
th

 3

T
im

in
g 

m
od

el

T
im

in
g 

m
od

el

si
m

ul
at

io
n

m
er

ge
ca

lc
ul

at
io

ns

M
er

ge

al
go

ri
th

m

Se
t c

ur
re

ct
 ti

m
in

g 
st

at
e

R
un

 s
im

ul
at

io
n

un
til

 u
nk

no
w

n 
co

nd
. b

ra
nc

h
or

 e
nd

 o
f 

pr
og

ra
m

fo
r 

in
st

ru
ct

io
n 

i

M
er

ge
 p

at
hs

 a
, b

U
pd

at
e 

tim
in

g 
m

od
el

Se
t c

ur
re

nt
 s

ys
te

m
 s

ta
te

C
ul

ca
la

te
W

C
E

T
∆

F
ig

ur
e

4.
1:

O
ve

rv
ie

w
of

th
e

W
C

E
T

to
ol

.

62 CHAPTER 4. IMPLEMENTATION

4.2 The PSIM simulator

The PSIM simulator is included in the distribution of GDB (The GNU
Project Debugger) as a simulator target for executing and debugging
PowerPC code. It was chosen by us due to its relative simplicity. The
simulation is done in an interpreter loop that first fetches an instruction
and then dispatches it to a function implementing the semantics of this
instruction. Most of the semantic functions use fairly simple arithmetic
operations involving the processor registers.

To extend the simulator, which is written in the C language, we made
minor modifications to the simulator code to make it work in a C++
environment. This was made in order to exploit the fact that arithmetic
operators can be overloaded in C++. We changed the data type for
registers and memory to a new extended version of the same type. This
extended data type (a C++ class) added the possibility of expressing the
value unknown and also defined all arithmetic operators on this new type
to correctly perform calculations involving unknown. As a result of this,
the semantic functions could be reused with minor modifications. This
greatly simplified the implementation and also prevented new bugs to
appear in the semantic functions. To further simplify the implementation,
we chose not to support floating-point operations with unknown values.
The semantic functions for the floating-point operations are quite complex
but we believe the same approach of redefining the register data type
could be used to extend floating point functions as well.

The definition for the extended data types for registers and memory
differ. For the memory, one additional bit of memory is used for each
32-bit word to hold the known/unknown information. Also, one addi-
tional bit is used to hold lock/unlock information necessary to handle
unknown load and store instructions. All memory words belonging to an
unpredictable data structure are marked as locked before starting simu-
lation. When a memory word is locked, writes to this word are ignored
and reads always return unknown. For registers we used one additional
bit of storage for every bit in the register. Thus, each bit in a register can
be set to known or unknown. This finer granularity is useful especially
for the condition code register which contains different condition codes in
different bit fields. Bit granularity for memory was not chosen in order
to save space.

Other important modifications to the original simulator code are the
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possibility of switching the register and memory state by simply switching
a pointer, adding a test to the semantics of conditional branches to check
if the branch condition is unknown, in which case the simulation should
stop, adding a test to the semantic function for store instructions to notify
the user of all store instructions having an unknown reference address,
and finally adding a call in the interpreter loop to call the update function
for the timing model.

4.3 Merging

The merging of two paths pA and pB is done by first doing a merge of
the timing states, tA, tB, and then merging the content of registers and
memory. The path resulting from the merge replaces the path that was
found to be the long path and the short path is deleted.

To speed up the merging of paths and the creation of new paths, we
only copy memory content when needed. We use the fact that paths that
are to be merged, often have shared a long history of execution before
they got split up. By only recording changes made to the system state
since the time where the two paths were created, it is possible to quickly
identify the parts of memory where the two system states differ. This is
implemented by dividing the 1 Mbyte main memory into small fixed sized
chunks of 512 bytes and letting each path store only modified memory
chunks. In this way, only a few chunks of memory need to be compared
during a merge operation and when creating new paths, no memory needs
to be copied.

When only storing modified memory chunks we must also take into
account that paths can split several times. This makes it necessary to
represent the memory as a tree where each node holds modified memory
chunks compared to its parent node. The leaf nodes of this tree represent
the actual memory content of the current paths. An illustration of this is
shown in Figure 4.2. Whenever a write occurs to a memory chunk that is
not present in a leaf node, this memory chunk is copied to the leaf node
from a parent node.

The tree structure used to hold the memory content has proven to
be useful as a general structure to hold information that is changed in
an incremental way during simulation, since such information can partly
be shared between paths. For example, the cache conflict analysis that
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will be presented in Chapter 8 needs a list of memory accesses for each
path. This list is also stored using the same tree structure as the memory
content.

4.3.1 Cache algorithm

Before leaving the subject of merging we will present the algorithm used
for calculating the upper bound ∆IC (and ∆DC) as presented in Sec-
tion 3.3. The algorithm is based on the alternative expression from Sec-
tion 3.3:

∆IC(ICA, ICB) = PIC

n−1∑
s=0

m−1∑
i=0

c(s, i)

where c(s, i) is defined by:

c(s, i) =




1 if there exists no block k such that ICA(s, k) = ICB(s, i)
and ICB(s, i) 6= invalid

1 if there exists a block k such that ICA(s, k) = ICB(s, i)
and ICB(s, i) 6= invalid
and if there also exists a block g < k such that
ICA(s, g) 6= ICB(s, h) for all h < i

0 otherwise

Expressed informally, this means that we can get an extra miss from
ICA when compared to ICB if a block ICB(s, i) is not found in ICA

or when this block can be replaced earlier in ICA than in ICB . The
algorithm calculates the number of extra misses, CA for one cache set s.
Based on this, the upper bound ∆IC is obtained by:

∆IC(ICA, ICB) = PIC

n−1∑
s=0

CA(ICA(s), ICB(s))

The algorithm, which is presented in Figure 4.3, uses the boolean vec-
tor found to keep track of the cases where blocks found in both ICA and
ICB can be replaced earlier in ICA than in ICB. This vector is gradually
updated in the loop going through the tags in ICB . For example, con-
sider a vector found containing the following in some iteration of the loop:
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function CA(ICA(s), ICB(s))
misses = 0
found [0 . . . (m− 1)] = false
first false = 0
for all tags b ∈ ICB(s)

if b = invalid then
return misses

else
search for tag b in ICA(s, [first false, . . . , (m− 1)])
if tag b found at position k then

found [k] = true
if k 6= first false then

misses = misses + 1
end if

else
misses = misses + 1

end if
advance first false if needed to point at

first false element in found
end if

end for
return misses

end function

Figure 4.3: The algorithm used to calculate ∆IC (and ∆DC). It marks
in a vector found the position of tags in ICA processed so far. A newly
processed tag in ICB must be found at the first false position in this
vector to not count as an extra miss.
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i 0 1 2 3 4 5 6 7
found [i] true true true false false false false false

This means that the three first tags in ICA are all found in ICB

below or at the position in ICB that is currently being processed. Let
us now assume that the next tag considered from ICB (at position i in
ICB(s)) is found at position 4 in ICA. Then, found [4] would be set to
true. However, found [3] = false. This means that ICA(s, 3) contains a
tag not yet found in ICB(s). Thus, there exists a block g < 4 such that:
ICA(s, g) 6= ICB(s, h) for all h < i which means that this block can be
replaced earlier in ICA than in ICB. In order for a block to not count
as an extra miss, the tag b from ICB must be found in ICB at the first
false position according to the vector found .

4.4 Path progress

An important concept for the viability of the WCET algorithm is the
concept of path progress. The WCET algorithm needs path progress in-
formation to determine when paths are possible to merge and which path
to simulate next. Two paths that are allowed to merge are defined as be-
ing equal progress paths. All paths that have made the least progress and
should be simulated further are defined as minimum progress paths. The
current implementation of these concepts define path progress in terms
of the number of loop iterations done so far and need information about
the location of loops in the program. Ideally, this information should
be extracted automatically from the control flow graph of the program,
but to simplify the implementation and to avoid the need of construct-
ing a control flow graph, manual annotations are used instead to mark
loop headers and loop exit paths, and to give reachability information.
These annotations can be added on a per-need basis. Using no annota-
tions works fine if the analyzed program contains a single feasible path.
Then, no path merging will be needed. On the other hand, if the num-
ber of simulated paths grows exponentially, we need to add annotations
for all loops that surround the unknown conditional branch causing the
exponential growth.

The currently used progress definitions are based on the assumption
that all loops in the program can be related to each other in the form of a
loop hierarchy tree. An exampel of such a tree can be seen in Figure 4.4.
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Program

loop 1 loop 6

loop 2

loop 3 loop 5

loop 4

Figure 4.4: Example of a loop hierarchy tree which shows how loops are
nested within each other.

This tree shows whether two loops are disjoint or one loop is nested
within the other (the parent). To construct such a tree, we imagine that
we have the complete control flow graph of the program. Moreover, func-
tions are inlined at each calling location to distinguish between different
instances of the function calls. Recursive function calls can be treated
as equivalent to loops. To form a hierarchy tree of the loops present in
this expanded control flow graph, we assume that the graph only con-
tains natural loops [ASU86] and if two loops share the same loop header,
they should be treated as one loop. For programs containing more com-
plex loop structures, the WCET algorithm still works but the merging of
paths is maybe done less often, which could lead to an increased number
of paths to analyze.

4.4.1 Progress representation

In each path, the progress information is represented by a stack of loop
counters. This stack holds information about how many times the current
loop and its direct and all indirect parent loops have been entered. Thus,
the elements in a stack corresponds to all loops along a path from the
root to the current loop in the loop hierarchy tree. Each item in the loop
stack, i, holds the id of the loop, i.id , and a count, i.cnt . For example,
consider the stack (the rightmost element being at the top):

A = (a1, a2, a3) =

(
id 1
3

,
id 2
1

,
id 5
6

)
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This stack shows a path which has entered loop 1 three times, loop
2 one time and loop 5 six times. The last instruction simulated is inside
loop 5. To keep the loop stack updated, the simulator must push a new
counter on the stack when a new loop is entered, and pop off the counter
when the corresponding loop is left. If a loop is reached that is already
in the stack, its counter must be incremented. For this to work, the
simulator relies on the manual annotations to know the location of all
loop headers and the loop exit paths.

An annotation marks the location of a loop header or the location of
an exit path (actually the location of the destination of the exit path)
and also gives an identification number to the loop, id , and the identifi-
cation number of the parent loop, idp, (the loop surrounding this loop).
Top-level loops have an: idp = 0. At the start of the simulation, the
annotations are parsed and each annotation is connected to a specific
instruction address using compiler debug information. At each of these
locations, the simulator is asked to register a progress update callback, i.e.,
whenever the simulation passes one of these locations, a function is called
that updates the progress information of the current path.

Whenever a loop header is passed, the progress update callback up-
dates the progress based on the loop identification, id , associated with
the current instruction address and based on the loop counter on the top
of the stack, t, as follows:

if id = t.id then
same loop: increase t.cnt

else
if id is a child loop of t.id then

push new loop counter on stack
else

pop top loop counter, try again with new top item t
end if

end if

If the stack is empty, a new loop counter is always pushed onto the stack.
Newly pushed counters start counting at 1. If a loop is left then the
counter corresponding to this loop id and all counters above this counter
in the stack is popped off the stack. This makes it possible to leave sev-
eral loops using only one annotation. Also, the loop exit annotations
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are seldom needed. If a new loop is entered before any unknown con-
ditional branch has stopped the simulation, the old loop’s counter will
automatically be popped off according to the loop header update func-
tion described above.

4.4.2 Path progress definitions

Based on the loop hierarchy tree and the loop counter stack it is now
possible to formally define the concept of path progress. We will assume
that the loop counter stacks are updated to record the exact progress
made, although in practice, annotations can often be left out without
degrading the analysis.

We will begin by defining a relation between stacks. To ease the pre-
sentation, we introduce the following relations between two stack elements
ai and bi:

ai = bi ⇔ ai.id = bi.id ∧ ai.cnt = bi.cnt
ai < bi ⇔ ai.id = bi.id ∧ ai.cnt < bi.cnt

Now, consider two stacks A = (a1, a2, . . . , ap) and B = (b1, b2, . . . , bq)
belonging to paths pA and pB , respectively, where p and q are the number
of elements in each stack. To define relations between these stacks, we
first set m to the number of top-most loops that A and B have in common.
This means that the paths have reached some locations that are inside the
loop am.id (which is the same as bm.id) but can be at different locations
inside this loop. Now, we can define:

A = B ⇔ m = 0 ∨ ai = bi, where 1 ≤ i ≤ m

A < B ⇔ (a1, . . . , am) < (b1, . . . , bm)

where:

(a1, . . . , ai) < (b1, . . . , bi) ⇔ i > 0 ∧ (a1 < b1 ∨
(a1 = b1 ∧ (a2, . . . , ai) < (b2, . . . , bi)))
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The meaning of these relations is as follows. If A < B then we now
for sure that path pA has made less progress than pB since pA has made
fewer iterations in some loop compared to pB . If A = B then both paths
pA and pB have made the same number of iterations in all top-most
loops they have in common, but path pA may have entered some nested
loops that pB has not entered or vice versa. Both paths are somewhere
inside the body of the loop am.id . This body corresponds to a subgraph
of the control flow graph and we will call this subgraph G. To really
pinpoint the progress for the case when A = B, we must also involve the
program instruction counters or using PowerPC terminology, the current
instruction addresses, ciaA and ciaB, in the system states of pA and pB ,
respectively. These addresses correspond to some nodes in the graph G.
We assume that ciaA and ciaB corresponds to node nA and nB in the
graph G, respectively. We then define the following relation:

nA < nB ⇔ nA can reach nB in graph G

Finally, we can extend the relations between stacks to form the fol-
lowing relations between the paths pA and pB:

pA = pB ⇔ A = B ∧ ciaA = ciaB

pA < pB ⇔ A < B ∨ (A = B ∧ nA < nB)

The relation pA < pB defines a partial ordering of paths. A path pA

is a minimum progress path iff there exists no other path, pB, so that
pB < pA. Also, two paths pA and pB are equal progress paths iff pA = pB .

The implementation does not follow these definitions fully. Instead of
using a control flow graph (which we do not have available) we simply
define:

nA < nB ⇔ ciaA < ciaB

That is, we assume that a location in the program can be reached from
all other locations that have a lower instruction address. Thus, we only
get an approximation of the minimum progress path definition above,
which could reduce the number of merge opportunities. To cover possible
problems with this approximate implementation, we also include the pos-
sibility to add reachability information by means of manual annotations.
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For all programs used in the experimental evaluation in the next chap-
ter, this approximate definition proved to be sufficient. However, some
reachability annotations were needed.

4.5 Discussion

The implementation of the tool has proven to us that the design can
be quite modular. For example, the WCET algorithm implementation
would not change in any major way if another simulator (for example,
simulating another architecture) was adopted. Also, the timing model
can be changed without causing any changes in the WCET algorithm or
simulator code. Adding timing analysis for new hardware mechanisms
is also quite straight forward. The timing simulation model must be
extended with new timing state and new update methods, and the merge
calculation must be extended with a new method calculating the ∆WCET
contribution for the new mechanism.

In Chapter 2, we discussed the advantages of a more powerful value
domain. There is no inherent problem in extending the simulator to
work with a more powerful domain. The result would be a slower sim-
ulation that needs more memory. Our choice of domain results in an
additional one bit of memory for each 32-bit word of memory to hold the
known/unknown status. An interval representation, for example, would
need two extra words for each word of memory. Also, a more complex
semantics would be needed, which would result in a slower execution of
each instruction. On the other hand, the more complex domain might be
preferable for some applications, if it manages to cut more infeasible paths
and thereby gain speed and accuracy compared to our simple domain.

The greatest need for improvement is in the handling of path progress.
The use of manual annotations is cumbersome and a more automated
method would be preferable. Ideally, the loop information needed for
the path progress relations could be extracted from the binary code as a
byproduct of the simulation. However, it is maybe not enough to solely
base such a method on the unknown conditional branches. It is possible
that we need to create the control flow graph and find out how loops relate
to each other and must therefore instrument all branch instructions. This
is a quite complex matter which is outside the scope of this thesis. Fur-
thermore, the progress measure adopted here is mainly suitable for C like
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languages. For more dynamic languages or other run-time environments,
other progress measures must probobly be developed.

Another nice improvement would be an integration with the GDB (the
GNU Project Debugger). This would permit a mixed debugging/analysis
framework where one could use GDB to insert unknown values at specific
points, do an analysis of a small part of a program, and afterwards, study
the result. However, issues regarding the user interface has not been
further studied.
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Chapter 5

Experimental Results

In order to evaluate the analysis accuracy of the cycle-level symbolic ex-
ecution method, we have estimated the WCET of seven programs run on
two different processor architectures making it possible to evaluate the
path and timing analysis capability in isolation. While both architectures
support the same instruction set—a subset of the PowerPC instruction
set [IBM]—the first one assumes that all instructions execute in a sin-
gle cycle with a zero-cycle memory access time. In contrast, to focus
on the accuracy of the timing analysis, the timing model of the second
architecture corresponds to the system presented in Section 3.2.

5.1 Benchmark programs and metrics

An overview of the seven programs can be seen in Table 5.1. There are
four small programs: matmult , bsort , isort , and fib, and three larger pro-
grams: DES , jfdctint , and compress.1 The GNU compiler (gcc 2.7.2.2)
and linker has been used to compile and link the programs. No opti-
mization was enabled. The simulated run-time environment contains no
operating system; consequently, we disabled all calls to system functions
such as I/O in the programs.

In order to make a useful comparison how good estimates our method

1The programs fib, isort , and jfdctint is from the SNU-RT Benchmark Suite created
by Sung-Soo Lim, Seoul National University. The programs matmult , bsort , and DES
was provided by David Whalley, Florida State University. The program compress was
taken from the SPEC CPU95 benchmark suite.
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Name Description
matmult Multiplies two 50x50 matrices
bsort Bubblesort of 100 integers
isort Insertsort of 10 integers
fib Calculates n:th element of the Fibonacci sequence for n ≤ 30
DES Encrypts 64-bit data
jfdctint Does a discrete cosine transform of an 8x8 pixel image
compress Compresses 50 bytes of data (downscaled version of compress

from SPEC CPU95 benchmark suite)

Table 5.1: Characteristics of the programs used.

produces, we need to calculate the actual WCET of each program. The
actual WCET was determined by running the programs on the simulator
with the worst-case input data. This was straightforward to determine
for all programs except compress, where the worst-case input data was
hard to find. Instead, a random sequence of 50 bytes were used as input.

Another evaluation issue is that two of the programs, fib and com-
press actually have a termination condition that depends on input data.
Therefore, we needed to bound the number of iterations to make WCET
statically decidable. Here, we used the approach described in Section 2.5
and added an extra exit condition in the loops. In fib we added the con-
dition: i ≤ 30 because we know that input data is always in this range.
In compress we bound an inner loop whose iteration variable is j, using
the current iteration count, i, of the outer loop: j ≤ i. This is a safe but
pessimistic bound, but we found it difficult to prove that a tighter bound
could be used. The inner loop implements a secondary probe in a hash
table and the number of iterations depends on unknown input data in a
complex manner.

5.2 Path analysis results

In this section we evaluate to what extent our method manages to au-
tomatically extract path information such as loop bounds and to what
extent it manages to exclude infeasible paths from the analysis. We do
this by using an idealized PowerPC architecture where each instruction
executes in a single cycle.
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Actual Estimated Structural
Program WCET WCET Ratio WCET Ratio
matmult 7063912 7063912 1 7063912 1
bsort 292026 292026 1 572920 1.96
isort 2594 2594 1 4430 1.71
fib 697 697 1 697 1
DES 118675 118675 1 119877 1.01
jfdctint 6010 6010 1 6010 1
compress 9380 49046 5.2 161161 17.2

Table 5.2: The estimated WCET using the ideal architecture.

In Table 5.2, we show three WCET numbers for each program: actual,
estimated, and structural. The actual WCET is our measurement of
the actual WCET as explained in Section 5.1. The estimated WCET
is the WCET determined by the method and the structural WCET is
the execution time of the longest structural path, including all infeasible
paths, in the control flow graph of the program when using fixed bounds
on the number of iterations of all loops. This number represents what
a WCET method would estimate that does not eliminate any infeasible
paths and uses fixed iteration bounds for all loops. The purpose of doing
this is to analyze the capability of the method to eliminate infeasible
paths. In the table, WCET is expressed in clock cycles and ratio is the
estimated (or structural) WCET divided by the actual WCET.

For all benchmarks, except compress, we can see that the method
succeeds in finding the actual WCET. In compress, the overestimation is
caused by the inner loop. As mentioned previously, we bound this loop
using the pessimistic condition j ≤ i, but during a normal run, we have
found that this inner loop is actually only doing one single iteration. It
should be mentioned that for compress, we do not know if the WCET we
determined is the actual WCET. We suspect that the actual WCET we
use is lower than the real one.

Two of the programs, matmult and jfdctint , have no infeasible paths
at all, and only one path is simulated. In DES , however, there exist in-
feasible paths caused by data dependencies between different functions.
These infeasible paths are eliminated by our method and only one path
is simulated. In bsort and isort , all infeasible paths were not eliminated.
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Still, this does not lead to any overestimation, since all simulated infea-
sible paths are shorter than the worst-case path the method finds.

If we take a look at the estimated structural WCET of the programs,
we see that the WCET is grossly overestimated for bsort , isort , and
compress. In bsort and isort it depends entirely on using a fixed iteration
count for an inner loop which is normally bound by the current iteration
count of the outer loop. This leads to an overestimation of a factor of
two of the execution time for the loop and affects bsort more than isort
because of the greater number of iterations done in bsort . In compress,
there is a similar inner loop which is forced to have a fixed iteration bound,
again causing an overestimation of a factor of two. In addition, there
exists a very long infeasible path that extends the structural estimate.
As for DES , the tiny overestimation results from infeasible paths. As
shown in Table 5.2, our method successfully manages to extract the loop
bounds and eliminates the infeasible paths automatically.

A strength of doing the analysis on the instruction level has been
revealed in DES . In the source code, one can find several conditional
expressions which seem to indicate several possible feasible paths through
the program. However, the compiler (gcc with no optimization enabled)
automatically generates code without any branches for these conditional
expressions and the resulting program has only a single feasible path.
This is detected by our method.

5.3 Timing analysis results

In this section, we analyze how well our integrated path and timing analy-
sis method manages to estimate the WCET of each program. We now as-
sume the detailed timing model of the PowerPC architecture described
in Section 3.2 with timing parameters according to Figure 5.1. Table 5.3
shows three WCET numbers: actual, estimated, and conservative. Again,
actual is the actual WCET we have determined whereas estimated WCET
is the WCET determined by our method. Finally, conservative WCET
corresponds to the estimated WCET when caches are turned off and each
instruction proceeds through the pipeline one at a time. Finally, the two
ratios shown correspond to estimated and conservative WCETs divided
by the actual WCET, respectively.

Starting with all applications except DES and compress we note that
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direct−mapped
16 byte/block
10 cycles miss penalty

256 byte size
2 cycles

MCIU

Pipeline Latencies

LSU
1 cycle
4 cycles

IU

Data Cache
Instruction and

Figure 5.1: The parameters used for the timing model when evaluating
the timing analysis. LSU is the load/store unit, IU is the integer unit,
and MCIU is the multiple-cycle integer unit.

our method manages to make an exact estimate of the actual WCET.
This is somewhat unexpected even if these same programs were perfectly
analyzed with respect to path properties. The expected added compli-
cation now stems from two sources: merging of the timing state and the
use of a data cache. We will now take a closer look on these sources in
order to understand the reason for the good result.

The first reason for the good result when doing timing analysis is that
no timing merge penalty was added at all during the analysis. In matmult ,
DES , and jfdctint , no merge at all was needed since only one feasible path
was simulated. In fib, all paths reached the end of the program before any
merge was needed. Finally, in bsort , isort , and compress, merging was
done but no penalty was added, i.e., two paths that were to be merged
always differed enough in length making it possible to discard the timing
state of the short path and continue the simulation with the timing state
of the long path.

The second issue which can cause overestimation is data caching. If
the address of a data reference depends on unknown input data, this ref-
erence may in the worst case result in a miss which forces another block
to be evicted from the cache. Thus, a safe estimate would be to charge
two miss penalties to an unknown data reference. However, all applica-
tions, except DES and compress, contain only predictable data structures
meaning that the addresses of all data references are independent of input
data. Thus, data caching is predictable and can be perfectly analyzed by
our method.

DES and compress contain unpredictable data structures as defined in
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Section 2.3. In our method, we avoid the pessimism of charging two misses
by using an alternative approach. Since unpredictable data structures are
mapped into a special area of the memory, as discussed in Section 2.3,
we also mark this area as non-cacheable. This is supported by most pro-
cessors, since memory mapped I/O locations are in general not cached.
During analysis we then know that an unknown reference will at most
cause a single cache miss. Further discussion about unpredictable data
accesses can be found in Chapter 7. For comparison purposes we have in-
cluded two versions of DES and compress: one where only accesses going
to predictable data structures are cached — called cache-predictable ver-
sion — and one where all accesses are cached — called cache-all version.
WCET estimation has only been done for the cache-predictable versions.
These numbers are shown in Table 5.3. The ratios shown for the cache-all
versions of DES and compress are the estimated and conservative WCET
for the cache-predictable versions divided by the WCET for the cache-all
versions. It should also be mentioned that when data caching is enabled
it is hard to find the worst case input data for the cache-all versions of
DES and compress; the data addresses going to the data cache sometimes
depend on unknown input data. We have not made any effort to address
this problem.

As can be seen from Table 5.3, an almost perfect estimate of the
WCET of DES is determined by our method in spite of unpredictable
data structures. The numbers for the cache-all versions of compress and
DES reveal to what extent the unpredictable data structures affect the
estimation. In DES , only 0.6 % of all data accesses are directed to un-
predictable data structures resulting in a slight overestimation. On the
other hand, in compress 34 % of all accesses are directed to unpredictable
data structures. By not caching these accesses we increase the execution
time (and the overestimation) by 18 %.

The overestimation by a factor of 3.22 in compress is due to the inner
loop as mentioned in Section 5.2. This is lower than the factor of 5.2
previously found for the idealized architecture. The reason for this is
that cache misses in the initialization part of the program makes the loop
in the middle of the program a little less significant for the total program
execution time.

To fully realize the importance of doing timing analysis, we can take a
look at the conservative WCET in Table 5.3. We see that when treating
all cache accesses as misses and permitting no pipelined execution we
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Analysis time [sec] Number of Number of
Program Ideal Detailed merges instructions
matmult 8.7 16.3 0 7063912
bsort 2.3 3.0 4949 292026
isort < 0.1 < 0.1 36 2594
fib < 0.1 < 0.1 0 697
DES 0.2 0.3 0 118675
jfdctint < 0.1 < 0.1 0 6010
compress 2.1 2.4 3965 49046

Table 5.4: The WCET analysis times for the ideal and the detailed tim-
ing model. Also included are the number of merges performed and the
number of instructions simulated in the worst-case path found.

increase the overestimation of the WCET by a factor of between 5.6 and
10.6. In compress, for example, we find that the additional overestimation
when doing no timing analysis is a factor of 6.1. Additionally, as we saw
in the previous section, the overestimation when doing no path analysis
(the structural WCET) is a factor of 3.3. Together, we get a factor of
20 in additional overestimation for compress when ignoring both path
and timing analysis which clearly shows the importance of integrating
accurate path and timing analysis.

5.4 Time complexity

Table 5.4 shows the time taken to perform the analyses of all benchmark
programs, as measured on a SunBlade 1000 workstation (UltraSPARC-
III, 600 MHz). The simulator simulates approximately 7/16.3 = 0.4 mil-
lion instructions/second when using the detailed timing model. For the
programs where no merging occurs, the simulation speed directly deter-
mines the analysis time. However, when merging occurs, many paths
besides the worst-case path is being simulated and time is also spent do-
ing the merge operation. This is the reason for the relatively long analysis
times for bsort and compress.
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5.5 Discussion

As the results indicate, to get a tight estimation of the WCET of a pro-
gram, it is crucial to eliminate infeasible paths, especially in the presence
of nested loops where a loop bound depends on the loop iteration vari-
able of an outer loop. Of equal importance is an accurate timing analysis.
The potential of detailed timing analysis is especially emphasized when
no merge penalty is incurred. Then, as we saw in the previous section, it
is possible to derive an exact estimate of the actual WCET. Also, as was
illustrated by DES , matmult , and jfdctint , where there is only a single
path through the program, this path can be simulated with an arbitrarily
detailed timing model and will always give us an estimated WCET with
no overestimation. Thus, by eliminating infeasible paths we can concen-
trate on the feasible ones, and make a more accurate timing analysis.

A big advantage of integrating the path and timing analysis can be
seen when comparing with approaches where the path and timing anal-
yses are kept separated. If an automatic path analysis is done first, we
would need a way to represent the path information generated from the
path analysis, and the timing analysis phase must be able to utilize this
information. On the other hand, if the timing analysis is done first, we
would be forced to work with fixed WCETs for blocks of statements when
doing the automatic path analysis and WCET calculation. These prob-
lems are not present in our method, which does the path and timing
analysis simultaneously.
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Chapter 6

Unbounded Timing Effects

In the previous chapters, we have seen how to do WCET analysis for
a timing model containing an instruction cache, a data cache, and a
simplified pipeline using in-order dispatch. An interesting question is
what would happen if we try to extend the timing model to model a
pipeline that supports dynamic scheduling. In this chapter, we will mainly
focus on the problems of analyzing dynamic scheduling of instructions but
also study the problems of analyzing other mechanisms.

As far as the simulation of the pipeline is concerned, the timing model
used can be arbitrarily complex. Limitations of the timing model is intro-
duced by the requirements of the merge operation—it must be possible
to calculate a constant upper bound, ∆WCET , quantifying the differ-
ence between two timing states. An upper bound, ∆WCET (tA, tB), is a
function that compares the timing state, tA, in one path with the timing
state, tB, in another path. This upper bound is calculated by comparing
two timing states. However, it can also be interpreted in terms of changes
to the timing state of a system. If the timing state, t1, is changed into
a new state, t2, then ∆WCET (t2, t1) is an upper bound on the effect of
these changes on the future execution time. We can use this to classify
different hardware mechanisms based on how easily they can be analyzed:

Definition 6.1 An architectural mechanism influencing the timing of in-
structions is said to have a bounded timing effect if there exists an
upper bound ∆WCET (t2, t1) on every possible change of the timing state
concerning the mechanism from t1 into t2. Conversely, a mechanism has
an unbounded timing effect if there exists no such (constant) upper
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bound.

We will also use the definitions bounded mechanism and unbounded
mechanism as shorthand for mechanisms having a bounded or unbounded
timing effect, respectively. A system where all mechanisms have a
bounded timing effect can be efficiently handled by our method, but if
one or several mechanisms have an unbounded timing effect our merge
operation can no longer be used to guarantee the safety of the final es-
timated WCET. Moreover, even if there exists an upper bound on the
timing effect, we must also be able to calculate it.

A common assumption is that if the worst-case instruction execution
time is assumed, the WCET estimation will be safe. We define a tim-
ing anomaly as a situation when such assumptions do not hold. In the
next section, we first identify the possibility of timing anomalies, in dy-
namically scheduled microprocessors and show several examples of such
anomalies. Because of these anomalies, dynamic scheduling is a mecha-
nism that can have an unbounded timing effect. We will give other exam-
ples of mechanisms that have an unbounded timing effect in Section 6.2.
In Section 6.3, we discuss the problem of analyzing unbounded mecha-
nisms and explain why all previously published timing analysis methods
for cache and pipeline analysis [HWH95, WMH+97, LMW95, LMW96,
OS97, LBJ+94, KMH96, FHL+01, FW99, WE00] would result in pro-
hibitive computational complexity to analyze these mechanisms. We will
then, in Section 6.4, discuss possible solutions and present two exam-
ples of methods that can handle unbounded mechanisms, the program
modification method and the serial execution method. We evaluate these
methods experimentally in Section 6.5 before we conclude this chapter
in Section 6.6 with a discussion about cache and pipeline related task
scheduling issues.

6.1 Timing anomalies in processors

In this section, we will study the use of dynamic, out-of-order scheduling
of instructions. The dynamic scheduling is complex to analyze since the
scheduling of future instructions in the pipeline is dependent on the exe-
cution time of each individual instruction which can take one of many dis-
crete values depending on input data. One example is a load instruction
whose execution time depends on whether the address hits or misses in
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the cache. Another example is an arithmetic instruction whose execution
time may depend on the operands. Thus, the scheduling of instructions
is typically dependent on unknown input data.

6.1.1 Definitions

Consider the execution of a sequence of instructions. For clarity reasons,
we will use the term latency meaning the instruction execution time.
When we use the term execution time it will mean the overall execution
time of the program. Let us study two different cases where the latency of
the first instruction is modified. In the first case, the latency is increased
by i clock cycles. In the second case, the latency is decreased by d cycles.
Let C be the future change in execution time resulting from the increase
or decrease of the latency. Then:

Definition 6.2 A timing anomaly is a situation where, in the first case,
C > i or C < 0, or in the second case, C < −d or C > 0.

That is, if C is guaranteed to be in the interval: 0 ≤ C ≤ i in the first
case or −d ≤ C ≤ 0 in the second case, we have no timing anomalies.

The definition above allows for a broad range of effects. For example,
Schneider and Ferdinand [SF99] have identified an acceleration effect,
i.e., the penalty from an instruction cache miss can get extended when
instructions are grouped for multiple issue. This acceleration effect is an
example of a timing anomaly. However, in this thesis, we will only focus
on timing anomalies related to the dynamic scheduling of instructions1.

To model the instruction execution in a pipelined processor, one often
uses a resource model. In this model, whenever an instruction that pro-
ceeds through a pipeline gets stalled, it is due to resource contention with
another instruction that accesses a common resource or operand. Typical
examples of resources are functional units and registers, but also buses,
read and write ports, and buffers should be treated as resources if they
can cause instructions to stall. The term dynamically scheduled proces-
sors is often used to describe a processor for which instructions execute
out-of-program-order. However, it is not the out-of-order execution that

1The previously published report of these anomalies [LS99c] was also focused on
timing anomalies related to dynamic scheduling. However, as pointed out by Jörn
Schneider [Sch99], this was not really clearly stated.
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is the central issue here. Rather, it is the order in which resources are
allocated in the processor.

The resources that an instruction can use can be divided into in-order
and out-of-order resources. In-order resources can only be allocated in
program order to instructions. Out-of-order resources can be allocated
to instructions dynamically, i.e., a new instruction can use a resource be-
fore an older instruction uses it according to some dynamic scheduling
decision. Typical out-of-order resources are functional units that service
instructions dynamically (out-of-order initiation). Examples of in-order
resources are such registers that must be reserved in-order to guarantee
that data dependencies in the program are not violated. Given this defi-
nition, it is now possible to state a condition when a processor can suffer
from anomalies:

Statement 1 If a processor contains out-of-order resources, timing
anomalies related to dynamic scheduling of instructions can occur.

If out-of-order resources are present, timing anomalies can occur. To
see how, we will now study an architecture containing out-of-order re-
sources and give examples of how timing anomalies may occur.

6.1.2 Timing anomaly examples

The focus of our study will be the model of an architecture seen in Fig-
ure 6.1 based on a simplified PowerPC architecture containing no floating
point units. A more realistic model is expected to contain more features
that would result in out-of-order resource allocation. Even for this sim-
plified architecture, timing anomalies do show up.

The architecture consists of a multiple-issue pipeline, capable of dis-
patching two instructions each clock cycle, and separate instruction and
data caches. To implement out-of-order execution of instructions, each
functional unit has two reservation stations. These can hold dispatched
instructions before their operands are available. Register renaming is
used to avoid unnecessary data hazards. Also needed, but not shown,
is a completion unit with a reorder buffer, which completes instructions
in-order by updating the register file from the renaming buffers.

All resources in the modeled processor are considered to be in-order
resources except the integer unit (IU) and the multiple-cycle integer unit
(MCIU) which are out-of-order resources. The load/store unit (LSU)
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CR0 − CR7
Condition reg. file

Integer Unit
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LSU
Load/Store Unit

DS
Insn. dispatchInsn. decode

2 instructions

R0 − R31
Integer register file

Multi−cycle Int. Unit

Instruction Cache Data Cache

Figure 6.1: A simplified, yet timing-anomalous, PowerPC architecture.

often initiates execution in-order to preserve ordering of memory accesses
so we also treat it as an in-order resource here. The out-of-order resources,
IU and MCIU, make timing anomalies possible as we will demonstrate
in three examples: one showing that a cache hit may be worse than a
cache miss, another showing that the miss penalty can be greater than
expected, and a third showing a possible domino effect when executing
loops.

Anomaly 1: Cache hits can result in worst-case timing

The first example presents a case where a data cache hit causes an over-
all longer execution time than a data cache miss. Consider the table in
Figure 6.2, which shows a sequence of instructions (A-E) and in which
clock cycle they are dispatched. The instructions represent the use of dif-
ferent functional units: the LD rd,0(ra) instruction uses the LSU, the
ADD rd,ra,rb uses the IU, and the MUL rd,ra,rb uses the MCIU. Reg-
ister rd is the destination register and ra and rb are the source registers.
The registers create data dependencies and thereby an ordering between
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Label Disp. cycle Instruction
A 1 LD r4, 0(r3)
B 2 ADD r5, r4, r4
C 3 ADD r11, r10, r10
D 4 MUL r12, r11, r11
E 5 MUL r13, r12, r12

Figure 6.2: Anomaly 1. An example when a cache hit causes a longer
execution time than a cache miss.
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instructions. To simplify the discussion of the examples we focus only on
the functional units and their reservation stations. We assume that the
instructions are dispatched according to the relative times seen in the in-
struction table in Figure 6.2 although in reality, on a dual-issue pipeline,
additional instructions would be needed to make the instructions dispatch
according to the example.

The diagram in Figure 6.2 shows when each functional unit is busy
executing an instruction. Also shown as horizontal dashed lines is when
the reservation stations are occupied. At the top, arrows indicate when
each instruction is dispatched to the reservation stations. Two cases can
be identified, one when the load address hits in the data cache and one
when it misses the cache.

If the load address hits in the cache then the LD instruction executes
for 2 cycles and can forward its result to instruction B which can start
executing in cycle 3. Here, we assume that B gets priority over C since B
is older. Thus, C must wait for B. On the other hand, if the load address
misses in the cache then the LD instruction executes for 10 cycles and the
execution of B will be postponed. This means that C can start executing
in cycle 3, one cycle earlier than in the cache hit case. This will make D
and E execute one cycle earlier as well, leading to an overall reduction
of the execution time by 1 cycle in the cache miss case. In this case, the
anomaly is made possible due to the IU being an out-of-order resource
permitting B and C to execute out-of-order.

Anomaly 2: Miss penalties can be higher than expected

The second example shows that the overall penalty in execution time due
to a cache miss can be higher than the normal cache miss penalty. Con-
sider the instruction sequence in Figure 6.3. The first instruction is a
load instruction which can either hit or miss in the cache. We assume
that the second load instruction (C) always misses. The first three in-
structions: A, B, and C, depend on each other and must execute one
at a time. In the cache hit case all instructions will execute as soon as
possible. The last instruction, D, will not interfere with the execution of
the other instructions.

If the first load experiences a cache miss, the execution of B will be
postponed. In this unfortunate case, instruction D has already started
when B becomes eligible for execution and B will be further postponed.
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A 1 LD r4, 0(r3)
B 2 MUL r5, r4, r4
C 3 LD r6, 0(r5)
D 10 MUL r11, r10, r10

Figure 6.3: Anomaly 2. An example when the cache miss penalty is
higher than expected.
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The result of this is that instruction C will finish executing 11 clock cycles
later in the cache miss case as compared with the cache hit case. This is
greater than the normal cache miss penalty of 8 clock cycles. In this case,
the anomaly is due to the MCIU being an out-of-order resource, which
allows instruction B and D to execute in arbitrary order.

Anomaly 3: Impact on WCET may not be bounded

We saw in the previous example how the total penalty of a cache miss
can be increased due to changes in the instruction schedule. However,
it is bounded by a constant value. We will now show an example when
the increase is not necessarily limited by a constant value, but can be
proportional to the length of the program. This means that a small
interference in the beginning of the execution may contribute with an
arbitrarily high penalty to the overall execution time.

Consider the instruction sequence in Figure 6.4. The two instructions
A and B constitute the body of a loop doing a number of iterations.
The delicate execution scenario shown here demands special requirements
on the dispatch and execute cycles. Therefore, the table entry for the
dispatch clock cycle and the additional table entry for the execute clock
cycle show the dispatch and execute clock cycle relative to a previous
instruction. By EA we mean the clock cycle when A executed in the
previous iteration of the loop. By DA we mean the clock cycle when A
was dispatched in the current loop iteration.

The two different scenarios shown in Figure 6.4 are the result of dis-
patching and executing the two instructions A and B repeatedly according
to the dispatch and execute cycle rules starting from two different execu-
tions of the first A instruction. In the fast case, instruction A in the first
iteration executes immediately when it is dispatched. In the slow case,
we imagine that it gets delayed one clock cycle because of a dependency
with an earlier instruction. This delay in the beginning is enough to cause
a domino effect that will delay the execution of A by one clock cycle in
each iteration. The total penalty on the execution time, caused by the
small delay of A in the beginning, will be k clock cycles if the loop does
k iterations. In the slow case, we assume that the old B instruction gets
priority over the new A instruction in each iteration.

In summary, we have shown three examples when timing anomalies
may show up in dynamically scheduled processors. These anomalies were
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Label Disp. cycle Execute cycle Instruction
A EA + 5 Immediate ADD r4, r3, r3
B DA + 4 DA + 6 ADD r11, r10, r10

Figure 6.4: Anomaly 3. Example of a domino effect.

possible due to the presence of out-of-order resources. The first two exam-
ples show that worst-case instruction execution assumptions may result
in optimistic estimates of the WCET if the future scheduling is not taken
into account. It is not difficult to construct other instruction sequences
where similar anomalies appear. While the last example shows a presum-
ably rare event, it emphasizes that it may not be safe to make assumptions
regarding timing on the instruction level.

6.2 Unbounded timing effects

The anomalies shown in the previous section can lead to unbounded tim-
ing effects. An example of this is the domino effect (anomaly 3). The
number of extra cycles incurred is proportional to the number of loop
iterations. Therefore, a constant upper bound on this effect does not ex-
ist. Moreover, even if we can prove that domino effects cannot arise, it is
not clear how to calculate an upper bound on the effects of an anomaly.
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Still, for more simple cases of dynamic scheduling, it should be possible
to create upper bounds but this is still an unexplored area of research.
For timing anomalies not related to dynamic scheduling, upper bounds
seems to be more simple to construct. For example, the acceleration effect
reported by Schneider and Ferdinand [SF99] can be handled by adding a
constant number of cycles to the instruction cache penalty whenever the
outcome of a cache access is unknown.

The unbounded effects we have found in a pipeline is due to schedul-
ing anomalies. However, there are more simple examples of mechanisms
having unbounded timing effects. Two examples are the use of random
and FIFO (first in, first out) cache replacement strategies. Let us take a
closer look at these mechanisms.

6.2.1 Random cache replacement

Using random (pseudo random) cache replacement sounds unpredictable
and it is. Consider two cache timing states, ICA and ICB, belonging to
two paths pA and pB , respectively. A cache state must now also contain
a seed for the random number generator and we assume that ICA and
ICB differ only in the seed. If we want to calculate ∆IC(ICA, ICB), we
get the worst case by considering a future access sequence that for all
accesses will generate cache misses from ICA. Such a sequence is easy to
construct if we know how the random numbers are generated. Now, since
the random number seeds differ in the two cache states, the same sequence
of future accesses will not generate cache misses for all accesses from ICB .
Otherwise, it would be a very bad random number generator. Also, the
longer we make the future access sequence, the greater the difference in
cache misses we will get. A conjecture we make is that there exists no
constant upper bound.

6.2.2 FIFO cache replacement

From a WCET point of view, the FIFO, first in, first out, replacement
seems similar to LRU but it is not. An initial difference in timing state
between two cache states can be sustained using FIFO whereas in LRU
the timing state of two caches will eventually converge when updated
with the same future access sequence. An example of this is shown in
Figure 6.5 where a set s in two cache states ICA and ICB has an initial
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ICA(s, i) ICB(s, i)
i 0 1 0 1

Initial state 2 1 2 3
a0 = 3 3 2 2 3
a1 = 1 1 3 1 2
a2 = 2 2 1 1 2
a3 = 3 3 2 3 1
a4 = 1 1 3 3 1
a5 = 2 2 1 2 3

a6 = a0 . . .
a7 = a1 . . .

. . .

Figure 6.5: Demonstration of unbounded timing effect for FIFO replace-
ment. Two cache states are shown for one set s in a 2-way cache. For
FIFO replacement, i = 0 is the most recently inserted block. Bold face
block tags represent cache misses. The cache state ICA causes misses for
all accesses ai and ICB only for every second access.

state of: ICA(s) = [2 1] and ICB(s) = [2 3]. Now, when updating these
states with the access sequence ai = 3, 1, 2, 3, 1, 2, . . ., we get a number of
extra misses from ICA when compared to ICB that is proportional to the
length of the access sequence ai. This shows that FIFO is a mechanism
having an unbounded timing effect.

6.3 Limitations of previous methods

Unbounded mechanisms cannot be handled by our merge operation. In
this section, we present arguments to show that all previously published
timing analysis methods for cache and pipeline analysis will face severe
problems when trying to analyze unbounded mechanisms. We will use
dynamic scheduling with the possibility of a domino effect as an example
of an unbounded mechanism and indentify the problems that arise if we
want to perform accurate pipeline analysis. To correctly estimate the
WCET, one would have to consider the effect all variations in instruction
execution times have on the possible instruction schedules.
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Consider first a program containing only a single feasible path. The
WCET is then the longest execution time of the instruction sequence
along this path. Assume that the sequence contains n variable-latency
instructions with unknown latencies, but we know that each instruction
can have k different latencies. Then, we must for each variable-latency
instruction find the latency that causes the longest overall execution time.
To be safe, we must examine kn instruction schedules because the exe-
cution of each variable-latency instruction can cause k schedules of all
succeeding instructions.

In general, analyzing all kn combinations is not feasible and another
approach is needed. Normally, timing analysis methods rely on the pos-
sibility of making safe decisions locally at the instruction or basic block
level. That is, a pessimistic choice is always made at this level. Un-
fortunately, due to the anomalies, we cannot make a local safe decision.
Consider a partial sequence of instructions, e.g., a basic block, contain-
ing a variable-latency instruction. When simulating the execution of this
partial sequence in the pipeline we may end up with k different pipeline
states. To be safe, we must then choose the pipeline state that will give
us the longest overall execution time. But this is impossible without
knowledge of the whole instruction sequence.

All previously presented methods for doing cache and pipeline anal-
ysis [HWH95, WMH+97, LMW95, LMW96, OS97, LBJ+94, KMH96,
FHL+01, FW99, WE00] perform pipeline analysis by first looking at each
instruction or basic block and then combining the WCET of all these en-
tities into a total WCET for the whole program. While none of these
methods are designed to handle dynamically scheduled processors, they
nevertheless rely on the capability to make local safe decisions when re-
garding variable-latency instructions. For example, in [HWH95, TF98]
the cache analysis is done first and then later used in a pipeline analysis
step. Whenever it is not possible to classify a cache access as a hit or a
miss, it is conservatively treated as a miss when doing the pipeline anal-
ysis. This may lead to a too optimistic estimation as we have seen in the
first anomaly example according to Figure 6.2.

Consider next a program containing several feasible paths. The
WCET is then the maximum WCET found among all paths and in order
to find the WCET we would have to examine all paths in the program.
This is, in general, not feasible and timing analysis methods again rely
on the possibility of making local safe decisions to reduce the complexity.
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When analyzing a small section of the program, e.g., a loop, the longest
path in this section is chosen before doing the analysis of the rest of the
program. Unfortunately, due to the anomalies, it is not possible to make
local safe decisions. To see this, assume that the small section contains
l different paths. When simulating the execution of the different paths
in the pipeline we may end up with l different pipeline states, leading to
the same problem as for the variable-latency instructions. It is not possi-
ble to know which pipeline state (path) that gives us the longest overall
execution time.

An example of when local decisions are used to reduce the path com-
plexity is the prune operation used in [LBJ+94, LHKM98]. It is used
to discard some combinations of basic blocks that will execute in shorter
time than another combination of basic blocks found. To make this prun-
ing decision, one must know how the execution of some basic blocks will
influence the execution of other parts in the program. Due to, e.g., the
domino anomaly (Figure 6.4), this can be difficult or even impossible.
The same problem exists in [HWH95] where the longest path is chosen in
each iteration of a loop.

To conclude, when doing timing analysis in the presence of unbounded
mechanisms, it is not possible to make safe local decisions, i.e., safe choices
between the different pipeline states that an unknown event may give rise
to. Fortunately, we will in the next section show two approaches that
can make it possible for previously published timing analysis methods to
handle unbounded mechanisms.

6.4 Handling unbounded mechanisms

In this section, we will present two approaches to estimate the WCET of
a program running on a system containing unbounded mechanisms. Both
approaches can be used together with previously published timing analy-
sis methods. The first approach is to approximate the unbounded mecha-
nism with a more pessimistic but bounded timing model. This approach
can successfully be used as a way to handle both random and FIFO re-
placement by modeling the cache as a direct-mapped cache containing the
same number of blocks as there are sets in the original cache. Recently,
a technique was proposed by Ferdinand et al. [FHL+01] to model the
Coldfire 5307 cache which uses a kind of global FIFO replacement. The
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global FIFO replacement is also an example of an unbounded mechanism
and they model it as a direct-mapped cache. Thus, they use a pessimistic
timing model. For timing anomalies, we will present a serial-execution
method to safely handle timing anomalies in dynamically scheduled pro-
cessors.

The second approach to handle unbounded mechanisms is based on
program modifications—by modifying the program we make it possible
for timing analysis methods to rely on safe local decisions. We will also
give an example of how this method safely can handle timing anomalies.
At the end of this section, we present a case study of how the program-
modification method can be used together with the cycle-level symbolic
execution method. We only focus on instruction and data cache analysis
and the out-of-order resource use of the functional units.

6.4.1 The pessimistic serial-execution method

A straight-forward way to make safe estimations for architectures con-
taining anomalies is to use the pessimistic serial-execution estimate. This
means that we model all instructions as being executed one at a time in
the functional units. That is, we sum the latencies of all instructions. In
addition to this, we add the miss penalties for all instruction and data
cache misses. We now formulate a claim that needs to be proven although
intuitive in nature. We assume that the scheduling of instructions is done
in a way that keeps at least one functional unit busy.
Claim: The WCET corresponding to a serial execution of the instruc-
tions, assuming their worst-case latencies, is always higher than the
WCET corresponding to any pipelined execution of the same instruction
sequence.
Informal proof: Instructions can not execute slower than one at a time
since this would mean that some functional units are idle sometime. This
can not be true since instructions are always available for execution. The
only possibility for an instruction to stall is cache misses which we add
separately.

The serial-execution estimate will be safe but maybe too pessimistic.
A big advantage, however, is that unknown events in the system are
handled in a safe way. They can not lead to a greater execution time
than the one estimated for serial execution.

It is probably possible to create a less pesimistic timing model that
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still has a bounded timing effect. However, this has not been further
studied in this thesis. It may be possible to relate the anomalies found in
dynamically scheduled processors to the anomalies that have been found
in the scheduling of tasks on a multiprocessor [Gra69, AJ02].

6.4.2 The program modification method

The serial-execution model is very pessimistic. If we want a tighter es-
timated WCET we must model the pipelined execution accurately and
deal with the problem of timing anomalies. One way of accomplishing
this is to modify the program so that we can rely on safe local decisions.
In short, we want to make sure that the following conditions are true:

1. All variable-latency instructions that have an unknown latency
must, when simulated, still result in a predictable pipeline state.
Also, we must make sure that the worst-case latency is used for the
instruction. In addition, other unknown events such as unknown
instruction cache accesses must also result in a predictable pipeline
state.

2. If the number of paths in a small section of the program is being
reduced by selecting the longest one or discarding the shortest ones,
then the state of the pipeline and the caches at the beginning and
the end of the paths must not differ when comparing them.

More generally, to handle any unbound mechanism we must arrange
so that all unknown events and all path merges only result in one possible
timing state. Ideally, we would like to have explicit program control of
all internal state in a processor that may influence the future timing of
instructions. However, for most processors, we have only a limited control
of the timing state.

One way of fulfilling the first condition is to force an in-order resource
use when executing the variable-latency instruction. Then, the pipeline
state must be predictable before allowing out-of-order resource use again.
The way to accomplish this is highly architecture dependent. Unfortu-
nately, no support for in-order resource scheduling is present in processors
today, but other instructions may be used for this purpose. For exam-
ple, in the PowerPC architecture, there is a memory synchronization
instruction called sync, which inhibits further dispatching until the sync
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instruction completes. This instruction can be used as a way to force
serialization together with a variable-latency instruction.

If one sync is placed after the variable-latency instruction then the
pipeline state will be known afterwards. If one sync is placed before the
variable-latency instruction we will know for sure that the instruction will
execute in-order and the maximum latency will be the worst-case latency.
Also, for other unknown events, like an unknown instruction cache access,
we can also use the same method to make the pipeline state predictable.
In the rest of this paper we will assume that an instruction such as sync
exists.

To fulfill the second condition above we can again use the sync in-
struction to handle the pipeline state. For example, by placing such an
instruction at the end of two paths, the pipeline states in the two paths
are made equal to each other. The state of caches is more tricky to han-
dle. It is necessary to set the state of the caches corresponding to the two
paths being compared equal to each other. How this can be done is also
highly architecture dependent. There are several options available:

1. One can invalidate all blocks in the caches. This should be possible
in almost all processors.

2. One can invalidate only the blocks that differ in the two caches.
This requires support for invalidation on the block level.

3. One can replace the blocks that differ with blocks that will be
needed in the future by preloading blocks into the caches. This
requires support for explicitly loading blocks into a cache.

The first option of invalidating the entire contents of the caches is obvi-
ously not an attractive solution since the performance will most probably
become poor. This is true also for the second option since each invalidate
operation will in many cases cause an additional cache miss later on. The
third option is the most promising one but requires special instructions
to preload the cache. Examples of such instructions are the instruction
and data cache block touch instructions (icbt and dcbt) found in the
PowerPC architecture.

When preloading blocks, it is best to preload a block that will be
needed somewhere along the worst-case path. Then, no unnecessary pes-
simism is added due to additional cache misses. In addition, it is often
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best to place a preload instruction outside loops if possible to reduce the
overhead. The best way to preload is a complex issue, which we do not
investigate further in this paper. In the experimental evaluation, this
information was derived manually (see Section 6.5).

When safe local decisions can be made, one can use previously pub-
lished timing analysis methods when estimating the WCET for programs
running on a dynamically scheduled processor. However, to really use one
of these methods one must also specify at which points in the program a
particular method relies on safe local decisions. Furthermore, the timing
model used by the method must be extended to model the dynamically
scheduled pipeline. If this is possible and how it is done for each individ-
ual method is beyond the scope of this thesis. Yet, in the next section, we
will describe how it is done for the cycle-level symbolic execution method.

6.4.3 Case study: symbolic execution method

We will now take a closer look at how the program modification method
fits in the method presented in the previous chapters of this thesis.

In order to estimate the WCET for a dynamically scheduled proces-
sor we must first attach the simulator to a timing model which accurately
models the execution of instructions in the pipeline including the instruc-
tion and data caches. Then, we must modify the program to be able to
make safe local decisions. This is done by first estimating the WCET of
the unmodified program. In this process, we identify all places in the pro-
gram where the analysis needs to make local decisions. In our case, this is
when variable-latency instructions with unknown latency are found and
whenever a merge operation is done during the analysis. At all identified
places in the program, modifications are applied in order to make all the
local decisions safe, i.e., sync instructions are inserted to handle pipeline
states that differ, and all blocks that differ in the instruction and data
cache are replaced by preloading other blocks that will be needed in the
future. Finally, a safe estimation of the WCET of the modified program
can be made.

The integration of the program modification and our WCET estima-
tion method described here is the one used in the next section where we
evaluate the program modification method and also compare it with the
pessimistic serial-execution method.
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6.5 Experimental evaluation

We have evaluated the amount of pessimism introduced when estimating
the WCET of seven benchmark programs, using the two methods pre-
sented in Section 6.4: the pessimistic serial-execution method, and the
program modification method. The modeled architecture is the one pre-
sented in Section 6.1, consisting of a dual-issue pipeline with instruction
and data caches.

The key question to answer is how much pessimism is introduced
by the two methods. If the pessimism is too severe, it will prompt for
advancements in timing analysis methods for dynamically scheduled pro-
cessors. If it is reasonable, previous methods can be used in combination
with the methods presented here to enable tight estimations of WCET
for programs on dynamically scheduled processors.

6.5.1 Methodology

The seven benchmark programs used are identical to the programs used in
Chapter 5 (see Table 5.1). To estimate the WCET of the benchmark pro-
grams, the method described in Section 6.4.3 has been used. The timing
model used in the WCET simulator is based on the model of the Pow-

erPC architecture discussed in Section 6.1 with the timing parameters
according to Figure 6.1. However, instead of a detailed simulation model
of the pipeline, we use an analytical approach. During simulation, the
functional unit latencies of the simulated instructions are added together
with instruction and data cache miss penalties. This we call the serial
time, Tserial. We then assume that the time T to execute the program on
the dual-issue architecture is:

T =
Tserial

2

The relation between T and Tserial is obviously not this simple in real-
ity. The above formula would represent the ideal situation of dispatching
two instructions each cycle. This is often not possible in reality due to
cache misses and pipeline stalls and is highly program dependent. Nev-
ertheless, this formula makes it easy to compare the different estimation
methods. When estimating the WCET our model automatically produces
the pessimistic serial-execution estimate. The other estimates are derived
by using the formula above.
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When modifying the programs we used sync instructions to handle
the pipeline state and preload instructions to handle the instruction and
data cache states as described in Section 6.4.3. We assumed that a single
sync placed at a merge point in the program incurs a penalty of 5 cycles
in the dual-issue architecture. When one sync instruction is placed before
and one after a variable-latency instruction, we assumed a penalty of 8
cycles, i.e., the second sync incurs less penalty than the first one since the
pipeline is already flushed by the first sync. When adding preload instruc-
tions, the program becomes bigger. The effect of this on the latency and
possible additional instruction cache misses has been estimated manually
and accounted for in the results. Three integer multiply instructions were
assumed to be variable-latency: mulhw, mulhwu, and mullw. The multiply
immediate instruction, mulli, and all other instructions were assumed to
have fixed latencies.

6.5.2 Evaluation results

The results from our evaluation of the seven benchmark programs can be
seen in Table 6.1. The actual WCET has been determined by simulating
the program using the worst-case input data, or using random input data
if the worst-case input was to complex to determine. The table also
shows the estimated WCET when using the serial method and when using
the modified program method. Also included for comparison purposes is
the unsafe program estimate, i.e., the dual-issue timing model has been
assumed but no program modifications have been made. This is unsafe
since timing anomalies can lead to an underestimation of the WCET.
The ratio columns in the table is the estimated WCET values divided
by the actual WCET. The modified slowdown is the modified program
estimate divided by the unsafe program estimate and shows the amount
of pessimism introduced when modifying the programs.

The serial method overestimates the WCET by at least a factor of 2.
This is expected and is a result of our assumed timing model. However,
for DES and compress, additional sources contribute. In DES , the small
additional overestimation is due to data accesses with an unknown refer-
ence address. These unpredictable accesses must not be cached in order
to keep the cache state predictable. This is accomplished by mapping the
accessed data structures into a non-cacheable part of the memory. Then,
unpredictable accesses will not interfere with the cache and will always
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cause a cache miss. In compress, a small part of the overestimation is
also due to unpredictable data accesses. In addition to this, the path
analysis fails to eliminate all infeasible paths due to a pessimistic upper
bound on a loop (a more thorough description of this loop can be found
in Chapter 5).

The estimated WCET of the modified programs is shorter than the
serial estimate for all examined programs. In fib and DES , the program
modification method gave no slowdown at all since no modifications were
needed. These two programs contain no variable-latency instruction and
during the analysis, no merging was done.

In matmult and jfdctint , the slowdown is caused entirely by variable-
latency instructions. No merging was done during the analysis. In jfd-
ctint , variable-latency multiplications are only used in the beginning of
the program and the inserted sync instructions have therefore quite small
impact on the estimated value. In matmult , however, the multiplications
are common and the inserted sync instructions give a slowdown of 20 %.

For the remaining programs, bsort , isort , and compress, it is the
merging that contribute most to the slowdown. In bsort and compress,
there are a small number of variable-latency multiplications but the effect
of those instructions is negligible. In bsort and isort , the merging occurred
at one place in the program. At this place, a sync instruction was added,
which resulted in a slowdown of 11 % and 12 % for bsort and isort ,
respectively. The highest slowdown experienced, 27 %, was for compress.
This is explained by the fact that merging occurred at four different places
in compress, each requiring a sync instruction.

At the merge place in bsort and isort , and at two of the four merge
places in compress, preload instructions for the instruction cache were
needed. At these merge places, the instruction cache states differed in
the paths being merged. The number of blocks to preload varied between
6 and 10 among the three programs. By preloading blocks that were
needed along the worst-case path no extra cache misses occurred and the
effect of these preload instructions is very small compared to the merging.
The data cache states never differed when merging paths in the programs.

In summary, our program modification method can perform well in
conjunction with our symbolic execution method for all our benchmark
programs. It works especially well for programs that have few variable-
latency instructions and only one feasible path so that merging is avoided
when analyzing the program. On the other hand, if a program contains
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many variable-latency instructions or many feasible paths then the serial
method could perform nearly as well or maybe better. For example, if
optimization is enabled when compiling matmult , the variable-latency
multiplications becomes relatively more frequent. This would change the
slowdown from a factor of 1.2 to approximately 1.5, thus approaching the
slowdown of the serial method.

6.6 Preemptive and non-preemptive scheduling

The WCET of a program is typically defined as the uninterrupted pro-
gram execution time. Nonetheless, most systems use preemptive task
scheduling which means that tasks can be interrupted at any time to allow
an other high-priority tasks to run. This does not invalidate the WCET
estimate of the high-priority task but when the original task continues ex-
ecution, the timing state has typically been changed by the high-priority
task in a way the can extend the WCET of the original program. This
effect is typically accounted for in a schedulability analysis by adding
an additional preemption delay covering these extrinsic timing effects
between different tasks. Several published methods can calculate cache
and pipeline related preemption delays. An good overview can be found
in [Sch00] where Schneider shows that WCET analysis and preemption
delay calculation can be more or less integrated.

When using the program modification method to handle unbounded
mechanisms, the timing state in the system must be well defined at all
points the program. An important consequence of this is that we must
statically account for all unknown events. This forbids the use of preemp-
tive scheduling where a program can be interrupted at any time. However,
limited preemption would be possible by treating preemption points in
the program as being similar to merge points. The timing state must
be predictable at all points, regardless of the program being preempted
or not. A further complication is that a typical computer system often
include several other mechanisms that have an unpredictable nature. For
example, techniques like DRAM refresh and DMA transfer of data can
make the memory access time vary, which in turn would give all store and
load instructions that experiences a cache miss an unpredictable latency.
These features must also be accounted for if we want to use the program
modification method.
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To conclude, if we rely on preemptive scheduling or a system with
other unpredictable mechanisms, we have only one option left. Namely to
model all mechanisms using pessimistic but bounded timing models. For
example, the serial-execution method does not rely on making unknown
events safe and can be used together with preemptive scheduling.



Chapter 7

Data Cache Analysis

Data caching has proven to be one of the more complex techniques to
analyze. Besides the symbolic execution method presented in this thesis,
several other estimation methods have been proposed that predict the im-
pact of caches on the WCET [BN94, FW98, LBJ+94, KMH96, HWH95,
LMW95, LMW96, Mue97, OS97, TF98, WMH+97, WE00]. One general
observation made from previous research is that the fetching of instruc-
tions is often highly predictable and can be accurately analyzed. On
the contrary, memory accesses going to the data cache are often unpre-
dictable and difficult to analyze. The reason for this is that a single load
or store instruction can generate many different reference addresses and
that these addresses also can depend on unknown input data.

In this and the next chapter, we will study how memory accesses to
program data structures determine the success of estimating the WCET
for a system that uses data caching. A conservative approach would be
to assume that all memory accesses miss in the cache. Obviously, this is
often overly pessimistic. A more successful approach should lead to no or
a small overestimation of the WCET and we will present several methods
that can successfully be used to analyze the impact of memory accesses
on data caching.

The symbolic execution method presented in this thesis naturally an-
alyzes memory accesses because it can take into account operands whose
values are either known or unknown. Therefore, cache behavior of ac-
cesses whose reference addresses are known during analysis is completely
predictable. On the other hand, accesses whose reference addresses are
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unknown, either as a result of unknown input data or as a result of
operand values that become unknown during the analysis, will result in
unpredictable cache behavior. We will use this property to develop a
method that can distinguish between predictable and unpredictable data
accesses, and, extending it further, distinguish between predictable and
unpredictable data structures.

In this chapter, we start in Section 7.1 to state concepts to reason
about data cache predictability. We then present an approach for data
cache analysis in Section 7.2 which is based on the notion of distinguishing
between predictable and unpredictable data structures. Based on this, in
Section 7.3, we build intuition into what types of data structures are
expected to be predictable. We will test this intuition experimentally in
Section 7.4 before we compare with related work in the area of data cache
analysis in Section 7.5.

7.1 Data cache predictability definitions

To understand how the symbolic execution method can be extended to
handle unpredictable accesses, we need to distinguish between the follow-
ing: a data memory access instruction in the program code, the actual
memory access done by the instruction at some point in time, and the
data structure in the main memory that is the target of the access.

Definition 7.1 An unpredictable memory access is a load or store ac-
cess whose reference address is unknown during estimation of the WCET.
Conversely, a predictable memory access is a load or store access whose
reference address is known during the estimation of the WCET.

The reasons why the reference address is unknown are twofold: First,
it could be unknown because it depends on unknown input data. Second,
even if the reference address does not depend on unknown input data, the
WCET method could introduce uncertainties that actually make some of
the operands in the program unknown. For example, in our method, the
system state of two paths that meet is compared. If the same operand
has different values in the two paths, it will be assumed to be unknown
in order to make it possible to drop one of the paths and make sure that
a worst-case value has been assumed. Therefore, whether an access is
predictable or not depends also on the WCET estimation method used.
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Definition 7.2 An unpredictable memory access instruction is a load or
store instruction that generates at least one unpredictable memory access.
Conversely, a predictable memory access instruction is a load or store
instruction that only generates predictable memory accesses.

Because loop constructs are common in most programs, a particular
load or a store instruction is executed many times. The purpose of this
definition is to identify all load and store instructions that can generate
at least one unpredictable memory access. One way of exploiting the
fact that a memory access instruction is unpredictable would be to tag it
as non-cacheable, thereby avoiding it to interfere with data that can be
predictably cached.

Definition 7.3 An unpredictable data structure is a data structure that
is accessed by at least one unpredictable memory access. Conversely, A
predictable data structure is a data structure that is accessed by only pre-
dictable memory accesses.

This definition illustrates an approach to achieve a high predictable
data cache performance. If a data structure is only accessed by loads
and stores whose reference addresses are known (predictable) during the
WCET estimation, the data structure can be predictably cached. Thus,
if it is possible to automatically distinguish between predictable and un-
predictable data structures, it should be possible to achieve a predictable
data cache behavior. The method presented in the next section has this
goal in mind.

The most important characteristic of unpredictable memory accesses
is that we connect it to the WCET estimation method used. This is
reasonable since it is hard to give a general, method-invariant definition
of unpredictable accesses that is not very vague and thereby useless. An
implication of the definitions is that whether a data structure is unpre-
dictable or not also depends on the method used. In the following, when
unpredictable data structures are mentioned, they are connected to the
symbolic execution method presented in this thesis.

When looking at a fixed path through a program, predictable mem-
ory access instructions are typically those that always generate the
same reference address or the same sequence of addresses, regard-
less of program input data. For example, many estimation meth-
ods [LMW96, KMH96, WMH+97, FW98, OS97] are capable of handling
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accesses to global scalar variables. These variables are accessed using a
fixed reference address that is independent of input data and is fairly
easily deduced by an estimation method. Thus, these variables are pre-
dictable data structures when regarding all methods.

7.2 A predictable cache analysis method

We will now describe a method that makes it possible to identify and
handle unpredictable memory accesses. We especially study how to apply
this to the method of symbolic execution, but the principles presented
here can be applied also to other WCET estimation methods presented
in the literature as we will discuss in Section 7.5.

As a first step, we identify all unpredictable accesses by performing
a WCET analysis. All memory accesses which have an unknown refer-
ence address can be collected. To reduce the amount of information all
unknown references are not collected but only the corresponding memory
access instructions. Thus, the result is a list of unpredictable memory
access instructions and we consider all memory accesses from these in-
structions as unpredictable. In the next step, each unpredictable memory
access instruction is connected to the corresponding data structure. This
requires information from the compiler or user about which data struc-
ture each memory access instruction can touch. Each data structure that
is accessed by an unpredictable memory access instruction is marked as
unpredictable. In the final step, linking is redone in order to map all data
structures marked as unpredictable into a special memory area. This
memory area will be marked as non-cacheable.

When all unpredictable data structures have been identified and prop-
erly mapped, a final estimation of the WCET can be done. Now, the time
taken to access an unpredictable structure is equal to the memory access
time for a memory word. Assuming a memory hierarchy with a single
level, the miss penalty is simply the memory access time. However, the
time to access and transfer a memory block to the cache can be greater
that the time to access and transfer a single word. Therefore, the miss
penalty can sometimes be greater than the memory access time for a
single word. If we would have allowed caching of the unpredictable ac-
cess, the time charged could in the worst-case have been two cache miss
penalties: one for the potential cache miss and one for the possibility of
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replacing a useful block. In summary, by letting all unpredictable accesses
bypass the cache we may gain more than a factor of two on the worst-case
performance of data caches.

The approach presented here requires support in the computer system
for controlling the caching of different memory areas. Fortunately, hard-
ware mechanisms that permit us to do this exist in many microprocessors
that use caches. In some systems, we can even choose if we want to cache
or not to cache each individual data access. As an example, PowerPC
403 GA [IBM] has a double-mapped memory address space. This means
that one physical memory location can be reached from two different ad-
dresses and we can choose different cacheability for the two addresses,
one cache-enabled address and one cache-disabled address. Other hard-
ware mechanisms also exist; in many general-purpose processors, support
often exists for virtual memory where cacheability can be controlled on
a per page basis. This can be used to create a similar double-mapping,
allowing individual accesses to be either cached or not cached.

Even if hardware permits cacheability control of each individual mem-
ory access, this can be hard to exploit since it would require quite complex
compiler support. Another available approach is to control each individ-
ual memory access instruction. This would allow caching of accesses to a
data structure when it is used predictably in some parts of the program
and not caching accesses when it is used unpredictably in other parts.
Still, compiler interaction is needed and care must be taken to keep the
contents of memory and cache consistent by flushing the cache at proper
points or by using a write-through policy.

For simplicity, the evaluation has been limited to the control of
cacheability on a data-structure level. This requires only support from
the linker in order to control the placement of individual data structures.
Also, there is no consistency problem as data is either cached or not
cached.

7.3 Data structure classification

Based on the notion of predictable versus unpredictable data structures,
we now develop intuition into what data structures are expected to fall
into each of these two categories. It should be noted though that this gen-
erally depends on the WCET method used. We will therefore comment
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Storage type Explanation
Global Global or static structures.
Stack Stack allocated structures.
Heap Dynamically allocated structures on the heap.

Access type Explanation
Scalar Only one element.
Regular array Array accessed by regular, stride accesses.
Irregular Irregular accesses but still input data independent.
Input dependent Reference addresses directly depends on input data.

Table 7.1: Data structure classification based on storage type (upper)
and access type (lower).

on to what extent the intuition depends on a certain WCET method.
In Table 7.1 we classify data structures with respect to storage type

(upper table) and access type (lower table). The storage type determines
what base address is used to access an element in the data structure.
This base address is typically stored in a specific register (global, stack,
or heap). Additionally, the access type determines how elements using the
same base address are accessed and typically uses a fixed offset (scalar)
or a varying offset that is calculated for each access (regular, irregular or
input data dependent). Whether a data structure is predictable or not
typically depends on both the storage type and the access type.

Let us first discuss predictability properties of data structures of dif-
ferent storage types. Global storage is the most simple one because the
base address is a fixed known value produced by the linker. Stack allo-
cated structures may look hard to analyze. Yet, they are often handled
predictably by all estimation methods. The general approach adopted is
to only estimate the WCET for complete programs since then the stack
pointer is known. If only a single function or procedure in the program
is analyzed the stack pointer would be unknown. The estimation method
must keep track of the function call stack, and if a function is called from
several places in the program each invocation of the function must be
treated as a separate instance. Then, each function instance will have
a fixed stack pointer value and thereby a known base address for stack
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allocated structures. Our WCET estimation method are designed to esti-
mate the WCET of complete programs where the stack pointer is known.
Nevertheless, we will in the next chapter, see how to extend the symbolic
execution method to handle the analysis of isolated functions where the
stack pointer is unknown.

The most tricky storage type is heap storage, i.e., dynamically al-
located memory on the heap. Due to its unpredictable behavior, this
kind of allocation is not always permitted in real-time systems. However,
our method allows some limited use of dynamic allocation. A necessary
condition for predictable dynamic allocation is that the memory must be
allocated in an order and in an amount that is independent of input data.
This means that at each point in time, we always know which objects re-
side on the heap and in which order they are allocated. Then, the base
address of the allocated data structures are known. Using dynamic allo-
cation in this controlled manner may seem a bit pointless but can still be
useful. For example, it would allow the programmer to write programs
that reuse memory in a straight-forward way.

A known base address of a data structure is not enough to make it
predictable. The access type must also be taken into consideration. For
scalar variables, the base address is the only thing used. They are there-
fore predictable whenever the base address is predictable. Regular array
accesses, i.e., accesses with a constant stride, are considered to be such
accesses that can be predicted using e.g. data dependency analysis. This
kind of analysis is treated in for example [FW98] and typically handles the
case where the reference address is a simple function of the loop iteration
variables. Many methods can analyze this kind of accesses.

A data structure accessed by irregular accesses may in theory be pre-
dictable since the accesses are independent of input data. However, many
estimation methods would classify it as unpredictable because of lacking
analysis of complex data dependencies. Yet, as we will see in Section 7.4,
our estimation method manages to handle a case of irregular accesses,
showing that some irregular data structures can indeed be predictable.

Finally, a data structure accessed by input data dependent accesses
will always be unpredictable as long as input data is considered to be
unknown.

In summary, we can note that many types of data structures are ex-
pected to be predictable using state of the art WCET estimation methods.
We test this hypothesis in the next section.
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7.4 Experimental results

We will now evaluate how well data caching can be analyzed in terms of
the overestimation of the WCET. This also corresponds to the question
of how much the worst-case performance is improved when using data
caching. Data memory accesses have been classified based on a WCET
estimation of seven benchmark programs and the fraction of memory
accesses that go to unpredictable data structures has been determined.
Furthermore, the data cache hit-rates and the corresponding WCET when
counting all accesses to unpredictable data structures as misses have been
measured.

7.4.1 Methodology

The symbolic execution method has been used to first classify all data
structures according to the procedure presented in Section 7.2. Then, the
WCET estimation tool has been extended to also collect all data memory
accesses along the worst-case path during the analysis. The collected
memory accesses have been classified according to which type of data
structure they access. The categories of data structures considered are
the ones presented in Section 7.3.

The timing model assumed for the hit-rate and WCET estimations
represents an ideal architecture containing only a data cache. All instruc-
tions execute in a single cycle except on a data cache miss when a miss
penalty of 10 cycles is added. The data cache is a 2 Kbyte direct-mapped
cache with 16-byte block size. When regarding the data cache, loads and
stores were treated as equivalent to each other.

An overview of the seven programs can be seen in Table 7.2. There
are four small programs: matmult , bsort , isort , and fib, and three larger
programs: jfdctint , DES and compress. The GNU compiler (gcc 2.7.2.2)
and linker has been used to compile and link the programs. No opti-
mization was enabled except for DES-opt which was compiled with the
option -O2. The simulated run-time environment contained no operating
system; consequently, we disabled all calls to system functions such as
I/O in the programs.
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Name Description
matmult Multiplies two 50x50 matrices
bsort Bubblesort of 100 integers
isort Insertsort of 10 integers
fib Calculates n:th element of the Fibonacci sequence

for n ≤ 30
jfdctint Does a discrete cosine transform of an 8x8 pixel

image
DES Encrypts 64-bit data
DES-opt DES compiled with optimizations enabled
compress Compresses 50 bytes of data (downscaled version

of compress from SPEC CPU95 benchmark suite)

Table 7.2: Characteristics of the programs used.

7.4.2 Results

The results from the memory access classification can be seen in Fig-
ure 7.1. The first five benchmarks, matmult , bsort , isort , fib, and jfd-
ctint , were found to contain only predictable data structures. In all these
five benchmarks, the majority of the accesses aimed at scalar variables
allocated on the stack. Another common effect is that most regular array
accesses were either allocated globally (matmult , bsort , and jfdctint) or
on the stack (isort). All the accesses to these data structures were found
to be predictable when estimating the WCET and we thereby confirm
the intuition from Section 7.3 that scalar and regular array accesses to
global or stack allocated structures are predictable.

In the last benchmarks, DES , DES-opt , and compress, unpredictable
data structures were found. In DES two arrays are read using an index
that depends on unknown input data. However, only 0.6 % of all accesses
went to these arrays and the majority of accesses did again reference
scalar variables allocated on the stack. The same is valid for DES-opt ,
although the amount of scalar stack accesses has been reduced. This
reduction is expected and can be explained by the fact that scalar stack
storage is often used as temporary storage by the compiler. Part of this
temporary storage can often be eliminated by the compiler when enabling
optimization. The reduction of scalar stack accesses makes the other
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matmult bsort isort

Scalar, global 1.4 % 0.1 % 2.6 %
Scalar, stack 49.9 % 77.0 % 66.6 %
Regular, global 48.7 % 22.9 %
Regular, stack 30.8 %

Total accesses 1057597 130652 876
fib jfdctint

Scalar, global 3.5 % 0.5 %
Scalar, stack 96.5 % 80.9 %
Regular, global 18.6 %

Total accesses 397 2754
DES DES-opt compress

Scalar, global 4.1 % 10.3 % 24.4 %
Scalar, stack 84.5 % 59.2 % 36.4 %
Regular, global 5.4 % 14.5 % 1.7 %
Regular, stack 0.6 % 1.5 %
Irregular, global 4.9 % 13.0 %
Input dep, global 0.6 % 1.5 % 37.5 %

Total accesses 45876 17200 8852

Figure 7.1: Classified memory accesses from the worst-case program path.
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Fraction Data cache No data cache
Name predictable hit ratio WCET WCET Ratio
matmult 100 % 92.1 % 7899863 17639883 2.2
bsort 100 % 97.8 % 320887 1598547 5.0
isort 100 % 98.1 % 2765 11355 4.1
fib 100 % 96.5 % 838 4668 5.6
jfdctint 100 % 98.7 % 6361 33551 5.3
DES 99.4 % 98.8 % 124276 577436 4.7
DES-opt 98.5 % 96.8 % 53905 220345 4.1
compress 62.5 % 62.0 % 82190 137050 1.7

Table 7.3: Fraction predictable accesses and corresponding hit-rate.

accesses relatively more significant. Still, only 1.5 % of all accesses is
unpredictable in DES-opt .

An interesting fact is that the WCET method managed to handle
some cases of irregular arrays accesses in DES and DES-opt . Some arrays
were accessed using an index obtained from another, regular array access.
Thus, the array references are independent of input data and were found
to be predictable by the WCET estimation method we used. This kind
of array accessing would have been found unpredictable by many other
WCET estimation methods.

In the final benchmark, compress, four data structures were found to
be unpredictable. The dominant structures in this case were two hash
tables (total size 1.5 Kbyte) indexed by unknown input data. In total,
37.5 % of all accesses went to these unpredictable data structures. Of
these 37.5, unpredictable accesses contributed with 30. The rest, 7.5
was the contribution from predictable accesses during the initialization
of the hash tables. This means that it would have been better to control
the cacheability on the instruction level instead of a data structure level.
However, the gain would have been small.

Table 7.3 summarizes the amount of memory accesses that were found
to be predictable. Also shown is the corresponding data cache hit ratio.
As explained before, almost all accesses were predictable in all bench-
marks except in compress. This can also be seen in the hit ratio numbers
which are close to 100 % in all benchmarks except compress where the
unpredictable accesses cause a significant reduction of the hit ratio.
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To understand the importance of data caching, we have also included
the estimated WCET for two cases: one when all accesses to predictable
data structures are cached and another when caching is disabled and all
accesses are counted as misses. Ratio is the cache-disabled WCET divided
by the cache-enabled WCET. It represents the improvement of the worst-
case performance obtained when including a data cache. Clearly, for the
majority of the programs studied, data caching is efficient and improves
the worst-case performance significantly, in many cases by a factor of
four or more. Even for compress, we get a considerable improvement by
a factor of 1.7 when using a data cache in spite of all the unpredictable
accesses encountered.

7.5 Discussion and related work

The symbolic execution method handles quite complex data dependencies
and identifies many data structures as predictable, even the irregular ones
in DES as seen from the results. An interesting question is if the use
of another WCET estimation method would have changed the results
drastically. Probably, other methods would also make a good analysis of
many of the programs. For example, the methods presented in [LMW96,
KMH96, WMH+97, FW98, WE00] should be able to produce similar
results as the symbolic execution method for the first five benchmarks.
These benchmarks only contain data structures that are fairly simple to
handle. The most complex one is regular array accesses which probably
could be handled by all mentioned methods. On the other hand, the
other methods would probably perform worse on DES and DES-opt , due
to the irregular array accesses present, which are accurately analyzed
by the symbolic execution method. An exception to this might be the
method by Wolf and Ernst [WE00]. They simulate the parts of a program
that only contain a single feasible path. If they successfully identify DES
or DES-opt as containing only a single feasible path, then they would
probably get similar results as obtained here.

The handling of compress by other methods is largely dependent on
which strategy they use to handle unpredictable accesses. This strategy
is not always made clear from the descriptions of the methods but in
for example [KMH96] they adopt the strategy of caching unpredictable
accesses. Then, to make a safe estimate of the WCET, two miss penal-
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ties must be added for each unpredictable access: one for the possibility
of a cache miss and another for the possibility of replacing another use-
ful block. This strategy would reduce the worst-case performance quite
drastically for compress. The resulting estimated WCET by our method
when using this strategy is 108690 cycles which is only a factor of 1.26
better than not caching at all. This can be compared to a factor of 1.7
obtained when using the method in this paper.

The method of identifying unpredictable data structures, described in
Section 7.2, is not limited to the symbolic execution method used in this
thesis. The same method could be used together with other estimation
methods. The important criterion is that a list of all instructions generat-
ing accesses with an unknown reference address can be created during the
estimation. This information can probably be generated early in the esti-
mation procedure since deducing the reference addresses of data accesses
is often the first step needed when analyzing data cache behavior.

The results obtained by the use of the symbolic execution method
are probably very hard to improve upon since the unpredictable accesses
in for example compress depends on unknown input data and are very
random in nature. Thus, the results obtained for the benchmarks is as
good as it can get. However, for other programs it is possible that accesses
to data structures that our method would classify as unpredictable could
be turned into predictable when using other methods. As an example,
consider regular accesses to an array allocated on a heap with an unknown
base address. The WCET method we use would then classify the array
as unpredictable. However, another method could predict some of the
behavior based on upper or lower bounds on the number of misses or hits
in the cache. The feasibility of this approach depends on how advanced
data dependency analysis that can be made and we find it currently
unclear if other methods could handle a case like this. For predictable
data structures, many methods [LMW96, KMH96, WMH+97, FW98] use
the approach of calculating upper and lower bounds on the number of
misses or hits.

A rather different approach of handling data cache analysis is de-
scribed by Basumallick and Nilsen [BN94] where they use a register allo-
cation algorithm to allocate data into different cache blocks. In this way,
they arrange the data in a way that guarantees a certain number of cache
hits. However, the same problem with unpredictable accesses will still be
present.
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The focus of this chapter has been to obtain tight WCET estimations
for a system with a data cache. If tight WCET estimation is not of
primary concern it may be more fruitful to cache also unpredictable data
since this probably reduces the average execution time. Then, to make
a safe estimate, the approach taken by [KMH96] must be adopted which
means that two miss penalties must be added for each unpredictable
access. Hence, it is possible to trade tightness of WCET estimation for
increased average performance.



Chapter 8

Unknown Data Placement

In this chapter, we continue with the problem of data cache analysis but
in a new context. Namely, the context of estimating the WCET for a
single subroutine. This is useful when WCET analysis is needed before a
program is fully written. For example, the subroutine could be a library
function that will be used by several other programs. Furthermore, the
analysis of a single subroutine can also be useful to reduce the complexity
when analyzing a complete program. When analyzing a single subrou-
tine, several new sources of overestimation appears. For example, the
WCET estimate of a subroutine A that calls a subroutine B will typically
be tighter if A and B are analyzed together instead of first analyzing
subroutine B and then use the result when analyzing A. However, in this
chapter, we will only study ways to reduce the overestimation possible
from the use of data caching.

The overestimation from data caching is determined by the possibility
of deciding the target addresses of memory accesses. Now, the problem
is that when considering a single subroutine it is a common case that the
target address of memory accesses will be unknown due to its dependency
on unknown input. Typically, the initial stack pointer and input parame-
ters like pointers to data objects in memory will be unknown. As we saw
in the previous chapter, this would normally make all memory accesses
unknown, leading to overestimation of the WCET. Fortunately, even if
the placement of stack and data objects is unknown, the accesses are still
somewhat predictable.

In Section 8.2, we present a new conflict analysis method that ex-
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tends the symbolic execution method presented in this thesis and that
makes it possible to reduce the over-estimation of the WCET due to the
unknown memory accesses. This extension makes it possible to analyze
the interaction of different memory accesses, such as global data accesses,
interacting and conflicting with stack accesses. It exploits the fact that
although the base address used for a sequence of accesses may depend
on unknown input data, the offsets relative to this base address may be
known, making it possible to better predict the cache behavior.

The experimental results, which can be found in Section 8.3, show
that the conflict analysis method in many cases finds tight estimates of
the worst-case number of data cache misses. Also, the time complexity
of the analysis is found to be reasonably low. The results show that the
use of a traditional data cache can in many cases lead to a predictable
estimate of the WCET even when analyzing a single subroutine.

Previously published data cache analysis methods [FW98, KMH96,
LMW96, WMH+97, WE00] can also be used to handle access sequences
with unknown base addresses. However, they are only able to handle a
single such sequence and cannot analyze the interaction between many
sequences. Thus, for subroutines containing several access sequences with
an unknown base address, these methods may grossly over-estimate the
WCET. We discuss this issue further in Section 8.4.

8.1 The problem

To better understand the problem with conflicting accesses in a data
cache, we will start by looking at a simple example. In the example and
in the rest of this chapter we will use the following system model.

8.1.1 System model

For the purpose of this chapter, we focus only on the effect of a data
cache on the execution time. We treat all memory reads and writes as
equivalent in terms of cache effect. The data cache is assumed to be a
traditional cache where placement is managed by hardware. The least
recently used block in the set (true LRU) is replaced when a new block
is inserted. Furthermore, it is assumed that one or several regions of
memory can be marked as being non-cacheable. To simplify the presen-
tation we require that all initial pointer values are aligned with the data
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matmult(matrix A, B, R)

{

int x, y, z;

for (x = 0; x < 10; x++)

for (y = 0; y < 10; y++) {

R[x][y] = 0;

for (z = 0; z < 10; z++)

R[x][y] += A[x][z] * B[z][y];

}

}

Figure 8.1: Matrix multiplication subroutine

cache block boundaries. Unless otherwise stated, we assume a 2048 bytes,
direct-mapped cache with a block size of 16 bytes.

8.1.2 Conflicting accesses

Let us assume we want to find an upper bound on the number of data
cache misses occurring when the matrix multiplication subroutine in Fig-
ure 8.1 is run. The upper bound must take into account that the matrices
can be placed at arbitrary locations in memory and that the value of the
initial stack pointer is unknown. The subroutine multiplies two 10 x 10
matrices, A and B, and puts the result in matrix R. The matrix type
is defined as a pointer to an array of integers. When compiled (without
optimization), the local variables x, y, and z are allocated on the stack.
This means that we will have a mix of accesses going either to the stack
area or to the different matrices allocated somewhere in memory.

Figure 8.2 shows the behavior of this subroutine regarding data cache
misses. The number of data cache misses has been measured for 1000
random placements of data, and then sorted. The minimum number of
data cache misses occurring is 78. This represents the number of cold
misses and matches approximately the working set of the subroutine,
which is 1200/16 = 75 blocks for the three matrices. Since the cache
capacity is higher than 75 blocks we have no capacity misses and the
extra cache misses we see for the majority of all test samples are due
to conflicting mapping of data into the data cache. The worst observed
combination of input pointer values resulted in 1000 cache misses.

126 CHAPTER 8. UNKNOWN DATA PLACEMENT

0 200 400 600 800 1000
Test case

0

200

400

600

800

1000

N
um

be
r 

of
 d

at
a 

ca
ch

e 
m

is
se

s

1000

78

Figure 8.2: Measured number of cache misses.

This example shows the importance of testing all input values in order
to find the worst case. However, an exhaustive test of all different input
pointer values is often not practical. A pointer to a data object determines
in which cache set the first block of the data object will be cached. Thus,
for block aligned pointers, the number of different cache mappings is
equal to the number of cache sets, numsets. If a subroutine depends on
s unknown pointers, then the number of combinations to test is:

combinations = numsetss

In the example, numsets = 2048/16 = 128. Thus, four pointers give
us 1284 ≈ 268 million combinations to test. The interesting question is
if it is possible to find the worst case without doing exhaustive testing.
As will be demonstrated in the following sections this is indeed possible
and in Section 8.3, we find that the actual worst-case for this subroutine
is not 1000 but 1252.

8.2 Approach

As demonstrated in Chapter 7, the symbolic execution method is a power-
ful method to use for data cache analysis. However, data structures with
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an unknown storage location were always classified as unpredictable. In
the following sections, we will show how to extend the capability of this
method to identify such data structures as predictable despite the storage
location being unknown.

In Section 8.2.1, we will first explain how to identify data structures
that are predictable but have an unknown placement. Then, in Sec-
tions 8.2.2, 8.2.3, and 8.2.4, we will explain how to use this information
in a data cache analysis without resorting to exhaustive testing of all pos-
sible combinations of different placements. Finally, in Section 8.2.5, we
will show how the new data cache analysis handles multiple paths and
how it affects the merge operation.

8.2.1 Data structure identification

The first step is to identify data structures that are accessed in a pre-
dictable manner but depends on an unknown base pointer that points to
the location in memory where the data structure is allocated.

When analyzing a single subroutine, like the one in the example in
Figure 8.1, we first assign unknown values to all unknown input values
at the start of the analysis. Using our simulator tool we then obtain a
memory access trace for each path in the program, identifying all accesses
going to data structures with unknown placement as unknown. The data
structures we are looking for will be classified as unpredictable.

Among the unpredictable data structures we can then use a testing
approach to identify the ones that can be turned into predictable ones.
The approach is to assign arbitrary values to all input data dependent
base pointers. This is done by simply linking the subroutine with a small
test program that allocates the data structures to some place in memory
and then call the subroutine. Then, we run our simulator tool again to see
if any data structure previously classified as unpredictable gets classified
as predictable. These data structures are marked as being predictable
with an unknown placement.

After the identification is done, all data structures have been classified
as either predictable if the access pattern is independent of input data,
predictable with an unknown placement if the access pattern is indepen-
dent of input data but the storage location depends on input data, or
unpredictable if the access pattern may depend on input data regardless
of the storage location being known or unknown.
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Finally, to make a WCET estimation, all predictable data structures
are allocated to some arbitrary memory location. To make a correct
analysis, the data cache analysis presented in Chapter 7 is extended with
a conflict analysis to take the unknown placement into account.

8.2.2 Data cache analysis

After the identification step, the data cache analysis is responsible for
analyzing the memory accesses produced by the simulator. Whenever a
load or store instruction is executed, we must determine if it hits or misses
in the cache. The added complexity in this case is that we want to find
out if the access can result in a cache hit regardless of the placement of
data structures.

To be able to analyze the interaction of different memory accesses
we keep a history of all memory accesses that have occurred. Whenever
a new access occurs we add it to the end of the history list and also
do a local analysis to determine if it hits or misses in the cache. An
example of such a history list can be seen in Table 8.1. The first column
in the table shows the accesses made by the program expressed as offsets
from the initial stack pointer or from the pointer to data structure A. In
the beginning of the analysis, fixed values are assigned to these pointers
(sp = 100000, pA = 3800) and columns 2 and 3 in the table show the
content of the list of accesses used during the analysis. In the list, each
access is labeled according to the data structure it targets. The memory
accesses belonging to a certain data structure are defined as being part
of the same memory access sequence.

To decide if an access is a hit or a miss, we first imagine that each
access sequence uses its own separate cache. This makes it possible to
identify compulsory misses such as cold misses or misses due to internal
conflicts, i.e., conflicts with other accesses in the same sequence. If an
access is not identified as a miss in this step, we continue with an anal-
ysis where we take into account possible conflicts from other sequences.
Accesses from other sequences are then assumed to be interfering in the
most pessimistic manner.

An example of the result of an analysis, for both a direct-mapped and
a 2-way set associative cache, can be seen in Table 8.1. For the first 6 ac-
cesses, each access can be classified by only looking at accesses belonging
to the same access sequence. Thus, the analysis is similar to a traditional
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cache analysis. However, for accesses 7,8, and 9, each access can miss due
to conflicts with accesses belonging to other sequences. When analyzing
access 7, we find that this access must be assumed to be a miss since pA

can be set to a value that makes accesses 4,5, and 6 map to the same
cache set as access 7. This is true for both the direct-mapped and the
2-way cache since accesses 4,5, and 6 will replace two blocks in a cache
set. Access 8 is analyzed in the same manner and must also be assumed
to be a miss. The last access, access 9, is more interesting. Here, the
stack pointer can be set to a value that makes accesses 7 and 8 map to
the same cache set as access 9. However, the stack accesses can only
replace at most one block in a cache set, so we get a possible conflict miss
for the direct-mapped cache but a guaranteed hit for the 2-way cache.

An interesting detail in the example concerns access 7 and 8. If we
study the example carefully, we actually find that only one of the accesses
7 and 8 will miss. The stack access cannot replace both accesses simul-
taneously, only one of them. In the next sections, we will first present
a basic algorithm that cannot discover this case. Then, we will show
how to extend the basic algorithm in order to improve the accuracy of
the analysis. Using the extended version of the algorithm we can indeed
identify one of the accesses 7 and 8 as a hit.

8.2.3 Basic algorithm

The basic algorithm used can be seen in Figure 8.3. It analyzes a new
access A with target address r. First, the list containing all previous
accesses is searched, starting from the end, to find an access targeting
the same sequence and memory block, memblock , as access A. If no such
access is found, the access is a cold miss.

If memblock is found at a position pos, we must analyze all inter-
mediate memory accesses and see if they can replace memblock . In this
step, we sort all intermediately accessed memory blocks into different sets
according to the sequence and cache set they map to. This sorting can
be seen as a kind of backwards cache simulation where each sequence is
stored in a separate cache. Starting with the last access, the number of
the accessed memory block is put into a set blocks(q, i), where q is the
sequence that the access belongs to and i is the cache set it maps to. This
is done for all accesses until pos is reached.

To see if memblock can be replaced, the algorithm calculates the max-
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# r is the target address of the memory access A.
# seq is the sequence that the access belongs to.
# blocksize is the cache block size.
# assoc is the cache associativity.
# size is the cache size.
# numsets = size/blocksize/assoc is the number of cache sets.
# |set | = the number of elements in set set .

function Analyze(A)
memblock = r/blocksize
pos = ListSearchBackwards(memblock , seq)
if memblock not found then

MISS (cold)
else

blocks = SortAccesses(pos)
cacheset = (r/blocksize) mod numsets
agemax = 1
agemax = agemax + |blocks(seq , cacheset)|
for all sequences q 6= seq do

agemax = agemax + max0≤i<numsets |blocks(q, i)|
end for
if agemax > assoc then

MISS (possible conflict)
else

HIT (guaranteed)
end if

end if
end function

function SortAccesses(pos)
return blocks where

blocks(q, i) = set containing all different memory
blocks from end of history list to position pos,
of sequence q mapping to cache set i.

end function

Figure 8.3: Basic hit/miss analysis algorithm for a new access A with
target address r.
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imum possible age, agemax, of memblock . The age of a block is used by
the least-recently used replacement scheme in order to replace the oldest
block when a new block needs to be inserted. If agemax is greater than
the associativity of the cache then memblock may have been replaced.
The maximum age is found by counting the number of unique interme-
diate accesses mapping to the same cache set as access A. For accesses
belonging to the same sequence as A, this is easily found as the number of
elements in blocks(seq , cacheset), where seq and cacheset are the sequence
that A belongs to and the cache set that A maps to, respectively. For
other sequences, any cache set can interfere. Therefore, for each other
sequence, the maximum number of elements found in any cache set is
picked. Finally, if agemax > assoc, access A is a possible miss, otherwise
it is a guaranteed hit.

8.2.4 Improving accuracy

When the basic algorithm analyzes each access of a sequence seq , it uses
the pessimistic simplification that each sequence other than seq causes
the maximum possible interference. However, by doing this analysis lo-
cally for each access the algorithm derives quite a pessimistic view of the
conditions necessary for conflicts to occur.

Ideally, we want to calculate the maximum number of misses among all
accesses that can occur considering all possible placements of data struc-
tures (an exhaustive algorithm). To express this more formally we first
need some definitions. The placement of a data structure is determined
by its corresponding initial pointer value. However, the cache behavior
is only dependent on where the data is mapped in the cache memory.
Therefore, to consider all placements of data we need only consider all
offsets, oi, of a sequence i in the cache. Since all pointers are assumed to
be aligned with data cache block boundaries, the offset can be defined as
the index of the cache set to which the initial pointer maps, i.e., oi ∈ S
where S = [0,numsets − 1] and numsets is the number of cache sets. Let
o = (o1, o2, . . . , os−1) ∈ Ss be a vector of dimension s containing the off-
sets for all sequences where s is the number of sequences. The set S = Ss

contains all possible combinations of placement for all data structures.
We can now express the maximum number of misses in the ideal case as:
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ideal = max
o∈S


 ∑

0≤A<na

miss(A,o)




The sum is made over all accesses A in the program (along a single
path, in Section 8.2.5 we show how multiple paths are handled) and na

is the total number of accesses. The value of the function miss(A,o) is 1
if access A may miss when data structures are placed according to offsets
o, otherwise the value is 0. This means that for each combination of
placements we do a traditional cache analysis of all accesses and pick the
combination that gives the maximum number of misses.

The basic algorithm, described in the previous section, go through
all accesses and does a local analysis for each access. The local analysis
includes the examination of all possible data structure placement offsets.
It calculates:

basic =
∑

0≤A<na

{
1 if Analyze(A) = MISS
0 otherwise

=
∑

0≤A<na

(
max
o∈S

miss(A,o)
)

The difference is that the max function has been moved inside the
summation, making the analysis more pessimistic. Our approach to get
improved accuracy is to do something in between the ideal and the basic
algorithm. By splitting the basic analysis into different cases, we can do
an exhaustive test of all cases and for each case do a basic analysis using
a restricted set of offsets.

Let K be the number of cases to restrict each offset to. Then, for a
given case ci ∈ C, where C = [0, K − 1], we restrict offset oi to:

oi = Khi + ci

where: hi ∈ H, and H = [0,numsets/K − 1]. For example, if K = 2 we
restrict the offsets to even or odd values when setting ci = 0 or ci = 1,
respectively. The number of cache sets, numsets, must be a multiple of
K. Thus, K is typically a power of 2.
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We can now formulate an expression for the estimated maximum
number of misses that the improved algorithm calculates. First, we
introduce the vector notations: c = (c0, c1, . . . , cs−1) ∈ C = Cs, and
h = (h0, h1, . . . , hs−1) ∈ H = Hs. Then, the result from the improved
algorithm can be expressed as:

improved = max
c∈C

∑
0≤A<na

(
max
h∈H

miss(A,o)
)

o = Kh + c

Thus, for a given case c we do a basic analysis but only include con-
flicts from other accesses if they occur for the restricted set of offsets. By
setting K = 1 or K = numsets the improved algorithm reduces to the
basic or ideal algorithm, respectively.

In practice, it is possible to analyze all cases simultaneously by keeping
a table, miss table(c), that holds the possible number of misses discovered
so far in the analysis for each case c. Then, in the end, the result is
obtained from:

improved = max
c∈C

(miss table(c))

To better understand how the improved algorithm works, we will again
study the example in Table 8.1 and see how accesses 7 and 8 is classified
by the improved algorithm. The result from an improved analysis for a
direct-mapped cache can be seen in Table 8.2. Each offset is split into 2
cases (K = 2) for a total of 4 cases since we have 2 sequences. Each case
is given by the variables cstack, cA ∈ [0, 1]. As an example, for cstack = 0
and cA = 1 we restrict the offsets to:

ostack = 2hstack + 0

oA = 2hA + 1

Even offsets for the stack pointer means that access 7 maps to even
cache sets and access 8 to odd cache sets. Odd offsets for the pointer to
data structure A means that access 6 maps to even cache sets. If access
6 may map to the same cache set as accesses 7 or 8 we may get a conflict
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miss. Thus, when the possible cache set mappings overlap we may get
conflict misses. The improved analysis manages, in this case, to find the
fact that only one of the accesses 7 and 8 can miss due to conflicts with
access 6 and we get at most one miss for these accesses for each case.

The improved algorithm can be seen in Figure 8.4. The case when
all offsets oi = 0 is defined as being the case when the original pointer
offsets are used. In this case, the reference addresses found in the list of
accesses are used unmodified. If oj = k for some j, it means that the
accesses belonging to sequence j are translated k sets. In the algorithm,
this translation affects the SortAccesses function. However, instead of
building a new blocks table for each case, a translation of the index is done
during the conflict analysis. The correctly translated blockscase(q, j) =
blocks(q, i), where:

i = j − oq(hq) (mod numsets)

When calculating the maximum age of memblock , the algorithm must
take into account that accesses in other sequences only conflict if they may
map to the same cache set cacheset as memblock for a set of restricted
offsets oi(hi) = hiK + ci. First, cacheset must be translated according to
the offset of the sequence it belongs to, oseq(hseq). We get:

cachesetcase =
= cacheset + oseq(hseq) =
= cacheset + hseqK + cseq (mod numsets)

Then, the conflicting cache sets in a sequence q is found in
blockscase(q, j), where j = cachesetcase. The index need to be translated
to be used for blocks(q, i). We get:

i = cachesetcase − oq(hq) =
= cacheset + hseqK + cseq − hqK − cq =
= cacheset + h′K + cseq − cq =
= h′K + setq (mod numsets)
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# miss table(c0, c1, . . .) = the number of misses for each
# case so far.
# K = number of cases to split each offset into.

function AnalyzeImproved(A)
memblock = r/blocksize
pos = ListSearchBackwards(memblock , seq)
if memblock not found then

increment all entries in miss table
else

blocks = SortAccesses(pos)
cacheset = (r/blocksize) mod numsets
agemax = 1
agemax = agemax + |blocks(seq , cacheset)|
for all cases 0 ≤ c0, c1, . . . < K do

agecase = agemax

cachesetcase = cacheset + cseq (mod K)
for all sequences q 6= seq do

setq = cachesetcase − cq (mod K)
agecase = agecase+

max0≤h′<numsets/K |blocks(q, h′K + setq)|
end for
if agecase > assoc then

increment miss table(c0, c1, . . .)
end if

end for
end if

end function

Figure 8.4: Improved hit/miss analysis algorithm for a new access A with
target address r.
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In the algorithm, we let the index h′ range from 0 ≤ h′ < numsets/K
and setq = cacheset + cseq − cq (mod K).

As we will demonstrate in Section 8.3, the improved algorithm is very
flexible. By choosing few cases we get a fast, less accurate algorithm.
By increasing the number of cases we get a slower but more accurate
algorithm. In Section 8.3, we evaluate this tradeoff.

8.2.5 Path analysis and merging

Up until now, we have only dealt with the problem of analyzing memory
accesses from a single path in the program. To extend the analysis to
multiple paths, we must integrate the analysis into the symbolic execution
method. This is done by simply replacing the data cache analysis in the
timing model introduced in Chapter 3 with the new conflict analysis.
Instead of a data cache timing model with a state that consists of an array
of tags, we now include the state of the conflict analysis, CA, that consists
of the list of accesses, alist , and the table of misses, miss table. However,
since the conflict analysis can classify a memory access instruction as both
a hit or miss depending on the case, the pipeline analysis should actually
be done for both the cache hit and the cache miss cases. However, this
could lead to an exponential growth of the number of pipeline states. The
simple solution adopted here is to assume that all data accesses will hit in
the cache when doing pipeline simulation and separately add the penalty
for the data cache misses. The expression for the total estimated WCET
introduced in Section 3.2.2 is now changed into:

estimated wcet = max
r∈R

(PL(r)) + max
c∈C

(miss table(c))PDC + pen

where the miss table term has been added, denoting the maximum num-
ber of possible data cache misses which is multiplied by PDC , the data
cache miss penalty. As previously explained, PL is the timing state of the
pipeline, R is the set of pipeline resources, and pen is the accumulated
merge penalty.

The WCET expression above does not take into account the possibility
of an overlap between a cache miss and some other long latency operation
in the pipeline. However, this can be improved upon. For example, if an
access is a cache miss for all cases, it can really be treated as a cache miss
when doing the pipeline simulation. This kind of improvements has not
been further studied.
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Besides the change in the expression for the estimated WCET, we
must also include the timing state of the conflict analysis in the expression
for the upper bound ∆WCET introduced in Section 3.1. This is done by
replacing the upper bound for the data cache, ∆DC , with an upper bound
for the conflict analysis. We introduce ∆conflict(CAA,CAB) as being the
upper bound on the difference in estimated WCET possible from the
conflict analysis state CAA when compared to CAB. We now get:

∆WCET (tA, tB) = ∆pipeline(PLA,PLB) +
∆IC(ICA, ICB) +
∆conflict(CAA,CAB) +
penA − penB

where:

∆conflict(CAA,CAB) =
PDC(∆alist(alistA, alistB) + ∆misstable(miss tableA,miss tableB))

What remains is to define ∆alist and ∆misstable. The result from the
function ∆misstable(miss tableA,miss tableB) should be an upper bound
on the number of possible extra misses that miss tableA can lead to that
miss tableB cannot lead to. This is simply the maximum difference for
any case (entry) in the table. For example, assume that for one case the
number of possible misses in miss tableA is greater than the the number
of possible misses for the same case in miss tableB. At the end of the
analysis, this case may prove to be the maximum one and thus represents
the final WCET. Thus, we get:

∆misstable(miss tableA,miss tableB) =
max

c0,c1,...,cs−1
(miss tableA(c0, c1, . . .)−miss tableB(c0, c1, . . .))

The upper bound ∆alist(alistA, alistB) for the list of accesses is calcu-
lated by the algorithm in Figure 8.5. In principle, one extra cache miss is
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# alistA = list of accesses in path pA.
# alistB = list of accesses in path pB.
# alist(last) = the last access in the list
# accessA = accessB ⇒ accesses refer to same memory block
# and belongs to same sequence.

function ∆alist(alistA, alistB)
remove superseded accesses in alistA and alistB

while alistA(last) = alistB(last)
remove last element in both lists

end while

return number of accesses left in alistB

end function

Figure 8.5: Algorithm for calculating the upper bound ∆alist.

possible for each access in the future that would be classified as a hit ac-
cording to alistB and a miss according to alistA. However, to accurately
determine this difference between alistA and alistB is very complex and
the algorithm is based on a more simple assumption. To begin with, it is
assumed that all accesses in alistB do not exist in alistA. The worst-case
future access pattern will then consist of the accesses in alistB and ∆alist

will be the number of accesses in alistB. This is, however, overly pes-
simistic. To get a useful algorithm, some additional operations are used.
First, each access list is cleaned by removing all accesses that refer to a
memory block that is later in the list referred to (superseded accesses). It
is only the last access that occurred to a memory block that is used when
determining hits or misses. Second, if the last element (or elements) in
both lists are identical, i.e., they refer to the same memory block and be-
long to the same sequence, then they can be removed since these accesses
can never cause a difference in the future.

It is worth noting that the algorithm presented in Figure 8.5 is quite
pessimistic. In the next section, we evaluate this pessimism experimen-
tally.
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8.3 Experimental results

To evaluate the accuracy and time complexity of the presented algorithms,
the improved conflict analysis has been integrated into the symbolic exe-
cution tool used in Chapter 5. Then, memory accesses from two different
subroutines, matmult and compress, have been analyzed.

8.3.1 Experimental setup

The WCET tool used is based on the PowerPC architecture. In this
evaluation, the pipeline and instruction cache analysis were turned off to
focus the evaluation to the conflict analysis. Thus, the estimated WCET
is simply set to:

estimated wcet = max
c∈C

(miss table(c))PDC + pen

For simplicity, we set the data cache miss penalty to PDC = 1 to make
the execution time equal to the number of data cache misses. The upper
bound ∆WCET becomes:

∆WCET (tA, tB) = ∆conflict(CAA,CAB) +
penA − penB

The data cache parameters were set to 2048 bytes with a block size
to 16 bytes. All pointers to objects were kept aligned with cache block
boundaries.

The improved algorithm described in Section 8.2.4 was used. However,
an extra optimization were added. By exploiting symmetry, it is possible
to set the offset of one sequence to a fixed value and remove this sequence
from the case variables. So if each offset of a sequence gets split into K
cases, the total number of cases to examine will be Ks−1 where s is the
number of sequences.

The GNU compiler (gcc 2.7.2.2) and linker has been used to compile
and link the benchmarks. No optimization was enabled. The simulated
run-time environment contains no operating system; consequently, we
disabled all calls to system functions like disk I/O and the printf function
in the benchmarks.
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matmult compress
Multiplies two Compresses 50
10x10 matrices bytes of data

Identified sequences 4 3
Multiple paths no yes
Path merges 0 3965
Executed instructions 47994 46170
Data accesses made 8207 8005

Table 8.3: Benchmark properties.

Table 8.3 shows some properties of the benchmarks used. For com-
press, the instruction count and data access count is along the worst-case
path found.

8.3.2 Data structure identification

The subroutine matmult has three incoming parameters being pointers to
the three matrices R, A, and B, where R is the result matrix, and A and
B are the source matrices for the multiplication. These matrices were
identified as predictable data structures but with an unknown placement
(see Section 8.2.1). Also, the stack area is treated as a predictable data
structure but with an unknown placement since the initial stack pointer
is considered to be unknown input data. In total, we identified 4 different
memory access sequences.

In compress, the incoming parameters are pointers to the source and
destination text buffers. The source text buffer was identified as pre-
dictable but with an unknown placement. However, the destination buffer
was identified as unpredictable. This buffer must therefore be allocated to
a non-cacheable memory area. Furthermore, compress was found to ac-
cess the stack area as well as many global variables. Again, the stack area
was treated as a predictable data structure with an unknown placement.
The global accesses target both predictable and unpredictable data struc-
tures. The unpredictable structures were allocated to a non-cacheable
memory area, while the predictable data structures were assumed to have
an unknown placement since they could get allocated to a different place
if the program is relinked. Also, the global variables were treated as one
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compound object, i.e., the linker is assumed to allocate these variables in
the same order regardless of the final placement. In total, we identified
3 different memory access sequences targeting the source text buffer, the
stack area, and the global variables.

8.3.3 Metrics

The worst-case number of data cache misses has been estimated for dif-
ferent data cache associativity (direct-mapped, 2-way, and 4-way), and
using different number of cases (see Section 8.2.4), splitting each offset
of a sequence into K = 1 case (basic analysis) or K = 2, 4, 8, 16, or 32
cases, giving a total number of cases of Ks−1 where s = 4 for matmult
and s = 3 for compress. The observed WCET has been included as a
reference value. Ideally, we would have liked to include the actual WCET
but this requires an exhaustive analysis that was too expensive to per-
form. Instead, we used guided testing to find the WCET. This was done
by doing a traditional cache analysis for each tested case of initial pointer
values. By using the result from the most accurate conflict analysis, we
could speed up the testing by focusing on promising ranges of input val-
ues.

As a comparison, two more traditional data cache analysis methods
have been used, cache nothing and cache a single sequence. The cache
nothing method is simply to assume that all data accesses cause a cache
miss or to turn off data caching. The cache a single sequence method is
to only let one sequence be cached. Then, we have used a traditional data
cache analysis using an arbitrary placement of the target data structure.

8.3.4 Conflict analysis results

Tables 8.4 and 8.5 show the results from the WCET analysis of the mat-
mult and the compress subroutine. The observed worst-case tells us that
when using the direct-mapped or the 2-way set associative cache, misses
occur due to conflicts between accesses in the different sequences. The
4-way associative cache eliminates all conflict misses and only cold (com-
pulsory) misses are left.

The basic analysis (K = 1) over-estimates the worst case for both
the direct-mapped and the 2-way cache by a factor ranging from 1.16
(compress, direct-mapped) to 10.38 (matmult , 2-way). However, for the
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Matmult Total
misses Ratio

Direct-mapped K=1 4204 3.36
K=2 3828 3.06
K=4 2963 2.37
K=8 2143 1.71
K=16 1567 1.25
K=32 1252 1.00

Observed worst 1252

2-way set assoc. K=1 4029 10.38
K=2 2566 6.61
K=4 1299 3.35
K=8 730 1.88
K=16 480 1.24
K=32 389 1.00

Observed worst 388

4-way set assoc. K=1 78 1.00
Observed worst 78

Cache nothing 8207
Cache stack only 4103

Table 8.4: Conflict analysis results for Matmult using improved algorithm
with K cases.

4-way cache it finds the exact number of misses. To get tighter estimates
for the direct-mapped and the 2-way cache, we need to split the analysis
into cases. The algorithm managed to reach within 1 % of the exact
worst-case number of misses when using K = 32 for matmult and K = 8
for compress. This is interesting since an exhaustive analysis corresponds
to K = 128 for the direct-mapped cache. Thus, the exact estimate was
found with considerable less effort than what an exhaustive analysis would
require.

For compress, the result from the basic analysis is considerably lower
for the 2-way cache when compared with the direct-mapped cache. This
is expected since the 2-way cache, compared to the direct-mapped cache,
allows the maximum age of a block to be higher before it gets replaced,
leading to fewer cache misses. Somewhat surprising, the same is not
true for matmult . In matmult , the basic analysis gives almost the same
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Compress Cache Merge Not Total
misses Ratio penalty cached misses

Direct-mapped K=1 3311 1.16 7 3001 6319
K=2 3260 1.14 30 3001 6291
K=4 3143 1.10 45 3001 6189
K=8 2861 1.00 85 3001 5947
K=16 2859 1.00 86 3001 5946
K=32 2859 1.00 86 3001 5946

Observed worst 2852 0 3001 5853

2-way set assoc. K=1 563 3.61 54 3001 3618
K=2 325 2.08 73 3001 3399
K=4 189 1.21 86 3001 3276
K=8 156 1.00 86 3001 3243
K=16 156 1.00 86 3001 3243
K=32 156 1.00 86 3001 3243

Observed worst 156 0 3001 3157

4-way set assoc. K=1 19 1.00 86 3001 3106
Observed worst 19 0 3001 3020

Cache nothing 0 8005 8005
Cache stack only 6 0 5182 5188

Table 8.5: Conflict analysis results for Compress using improved algo-
rithm with K cases.

result for the direct-mapped and the 2-way cache. The reason for this
can be found by studying the memory access pattern in matmult . The
typical data structure access pattern is: A, B, R, stack, A, B, R, stack, . . ..
This means that the possible maximum age of a previous access to the
same data structure is 4. Thus, for matmult , the associativity of the
cache must be greater than 3 to avoid counting many accesses as possible
conflict misses.

In both subroutines, stack accesses are the most common type of
access and have therefore been chosen as the access type to cache for the
cache single sequence method. The results from this method reveals an
interesting fact. For compress and the direct-mapped cache, it is better
to only cache stack accesses than to cache all sequences. By caching
only stack accesses, the number of conflict misses is reduced more than
the increase of the number of misses from the data that is not cached.
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Matmult Compress
Total # Analysis Total # Analysis

K cases time [sec] cases time [sec]
1 1 1 1 15
2 8 1 4 15
4 64 2 16 15
8 512 4 64 16

16 4096 25 256 20
32 32768 191 1024 37

Traditional 0.6 3.5

Table 8.6: WCET analysis times

Furthermore, for matmult and the direct-mapped cache, the cache stack
method performs better than the basic analysis does, showing the need
to split the analysis into cases.

8.3.5 Merge penalty

Table 8.5 also shows that for compress, a merge penalty was added for
some merges to guarantee a safe estimate of the total worst-case number of
misses. This means that differences in the list of accesses or the miss table
(see Section 8.2.5) was large enough to cause a penalty to be added. In our
case, the difference is mainly due to the list of accesses and the use of the
algorithm in Figure 8.5. This algorithm is quite simple and pessimistic.
Nevertheless, the accuracy of the algorithm is quite sufficient for our
study, since the added penalties are quite small.

Another explanation of the cause of the penalty is our use of a rather
simple timing model. In this study, the execution time of a path is de-
fined as being the number of data cache misses. If we would make the
timing model more accurate and add the pipeline and instruction cache
contributions to the execution time, the penalty would probably be re-
duced or eliminated since the execution time differences between paths
to be merged would increase and this would in turn reduce the need for
any added penalties.
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8.3.6 Time complexity

An important question is how many cases the analysis can be split into
without requiring too much analysis effort. The answer can be found in
Table 8.6 which shows the analysis times for different number of cases
and for the two benchmarks. The table also includes the times for doing
a traditional data cache analysis (no conflict analysis).

Compared to a traditional analysis, the analysis time needed for a
basic conflict analysis (K = 1) is a factor of 2 and 4 for matmult and
compress, respectively. When splitting the analysis into cases, the extra
analysis time needed is proportional to the number of total cases. As can
be seen in the table, for small number of cases the extra analysis time
is not noticeable. Therefore, a small number of total cases (for example
64) can always be used without slowing down the algorithm noticeably.
Thus, for compress, the worst case is found with hardly no extra time
needed. This is not true for matmult where we must spend a lot of time
if we really want to find the worst case.

8.4 Related Work

Previously published data cache analysis methods [FW98, KMH96,
LMW96, WMH+97, WE00] cannot analyze the interaction between dif-
ferent sequences of memory accesses. However, it is interesting to see to
what extent they still can be used.

Previous methods are only able to handle a single access sequence. In
order to handle multiple sequences, the problem must first be reduced in
some way. There are several alternatives available and we have already
used two methods in Section 8.3, the cache nothing and the cache a
single sequence methods, that are both applicable. These two methods
reduce the problem into analyzing at most a single sequence, which can
be handled by all previously presented data cache analysis methods.

If the memory system lacks the possibility of not caching some parts
of the memory, we will be forced to cache all data. In this case, the
worst-case estimates will always become worse. We must count accesses
to non-cached data as misses and if this data also becomes cached we
must account for the possible additional conflict misses that may occur.

In this chapter, we have assumed a traditional cache architecture.
However, there are several other cache architectures that could make the

148 CHAPTER 8. UNKNOWN DATA PLACEMENT

problem easier or maybe remove the need for any detailed conflict anal-
ysis. For example, hardware cache partitioning [Kir89] could maybe be
used to avoid conflicts by caching each data structure into a separate
partition. Another way to avoid conflicts is to use a cache where the
placement of data is software managed [Jac99]. However, these meth-
ods introduce the need to manage the partitions or placement of data.
Traditional caches may be easier to use.

Even with traditional data caches it is possible to apply different soft-
ware techniques to avoid conflict misses. For example, software cache par-
titioning [Mue95] or other conflict avoidance techniques [CKJA98] could
be used. However, these techniques often require that a complete pro-
gram is analyzed and produces a fixed placement of data. The algorithm
presented in this paper focuses only on a single subroutine. It is not clear
how the different techniques can be combined.



Chapter 9

Concluding Remarks

In the previous chapters, we have mainly tried to bring forward the
strengths of the symbolic execution approach presented in this thesis.
By doing an integrated path and timing analysis for all iterations of all
loops, it can accurately estimate the WCET of a program. However, to
make the method more practical to use a number of weaknesses should
be remedied:

• Time complexity The greatest concern is probably the time com-
plexity. To be more flexible, it should be possible to choose whether
to do an accurate and slow analysis or a less accurate but fast anal-
ysis. Other methods use several techniques that could be borrowed.
For example, to make the analysis faster it is maybe possible to
adopt a branch-and-bound approach similar to the one used by
Altenbernd [Alt96] to prune paths before they are simulated. How-
ever, this would influence the path analysis and the possible gain is
not easy to predict.

A more fruitful approach, is probably to include a possibility to
avoid analyzing all the iterations of a loop by adding a data-flow
analysis. The analysis done by the symbolic execution method
can probably be defined as a traced based abstract interpreta-
tion [Sch98]. By adding a fixed-point algorithm, it should be possi-
ble to use a data-flow analysis when speed is more important than
accuracy. However, this would destroy the information on loop
bounds and the method would need to rely on manual loop bound
annotations or be complemented by some other fast loop bound
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analysis [HSR+00]. An interesting approach, with moderate com-
plexity, that might be used is the approximate loop analysis pre-
sented by Lim et al. [LBJ+94]. Ideally, we would like an approach
that scales smoothly from full analysis of all iterations to a data-flow
analysis using a fixed-point algorithm.

• Modularity Another way to achieve a faster analysis is to make a
modular analysis. For example, by first analyzing a single subrou-
tine in isolation and then reusing this result whenever this function
is called reduces the complexity of the analysis. Further research is
needed to find out how this can be done best in order to reduce the
overestimation resulting from splitting the analysis.

• Annotations Clearly, the possibility to use manual annotations
or path information from other kinds of analyses needs to be im-
proved. The hybrid WCET estimation method presented by Wolf
and Ernst [WE00] combines simulation of single feasible paths with
the constraint solving approach. A similar technique could be
adopted where the symbolic execution method is used to analyze all
parts of the program where special constraints or annotations are
not needed.

The goal of the research behind this thesis, as stated in Chapter 1,
was to develop WCET analysis methods that could handle systems where
the execution history can influence the timing of instructions. This covers
arbitrarily complex systems. As we have seen in Chapter 6, the symbolic
execution approach presented in this thesis have problems with hardware
mechanisms having an unbounded timing effect. So, the approach cannot
efficiently handle systems using such mechanisms. An interesting question
is if it is possible to improve the analysis?

The timing analysis could possibly be made more accurate by in-
corporating knowledge about the whole program when doing the merge
operation. The current analysis is a forward analysis, i.e., during the
analysis no information about the future instructions in the program is
available. For example, if we have knowledge of future memory accesses
when calculating the upper bound ∆IC , we can exclude many possible
worst-case access patterns and reduce the upper bound. However, the
gain from this can be limited. It will only improve the analysis of pro-
grams containing paths of similar length. It will not solve the problem
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with unbounded timing effects.
The unbounded timing effects have different implications on the tim-

ing analysis depending on the application environment. For a strictly
non-preemptive system (see Section 6.6) where all events are known and
where the hardware allows control of the timing state in the system, the
timing merge operation is no longer needed and the timing behaviour can
be simulated using an arbitrarily accurate timing model. In this context,
the timing analysis approach presented in this thesis probably represents
the best analysis one can make.

In a preemptive system, pessimistic models must be used to handle
all unbounded timing effects. However, this is a limitation that affects all
timing analysis methods. Yet, it is possible that new kinds of analyses can
improve the situation. For example, by analyzing all instruction really
present in a program, it may be possible to construct a less pessimistic
timing model valid only for that particular program. This kind of analysis
would be fruitful for all timing analysis methods. For example, if it is
possible to prove that no domino anomalies (see Chapter 6) can arise for
a certain program, this can maybe be used to construct a less pessimistic
model or to bound the possible timing effect so that a detailed timing
model can be used for that particular program.

A big problem with the reliability of WCET estimation is the validity
of the timing model when compared to the real hardware [Eng02]. To
get an exact (or pessimistic) correspondence between the hardware and
the timing model for a more complex system, it is probably necessary to
formally try to relate the hardware description with the timing model.
This only works if one have access to a formal specification of the hard-
ware and if methods can be developed to relate these specifications to the
timing model. For many commercial microprocessors where the exact im-
plementation is unknown, it is still unclear if a reliable WCET estimation
can be done. It can be more reliable to use measurement techniques or
statistical modeling instead [CBG00, LHT00, PF99, BE00].
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