Document No

TOR/TNT/0028/SE
Date Issue Page
4 December 1995 1 1/156
Customer Nol//lssue
PROJECT
TITLE
Porting the GNU C Compiler to the Thor
Microprocessor
Name Function Date Signature
Prepared Harry Gunnarsson Master Thesis Project
Thomas Lundgvist
Checked Stefan Asserhall Thor Wizard
Authorized Bo Ernbert Project Manager
Distribution
Complete: CK
Summary: CA B1B, CP, DP, CV, CKPL,
CLAC, CSAC, SA
Saab Ericsson Space AB Telephone Telefax Visiting address
From Head ofice: S-405 15 GOTEBORG SWEDEN +46 31 35 00 00 +46 31 35 95 20 Delsjomotet
Branch office: S-581 88 LINKOPING SWEDEN +46 13 28 64 00 +46 13 13 16 28 Broderna Ugglas gata

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag2

Class: CUSTOMER Host System: FrameMaker 4.0
Contract No: Host File: B1_DATA/THOR/TNT/0028_01
SUMMARY

In this master thesis project an attempt has been made to port the freeware GNU C Com-
piler (version 2.7.0) to the Thor microprocessor. The resulting compiler compiles ANSI

C programs and generates assembler code for Thor. The compiler is not validated, and to
be useful it also needs an implementation of the standard C library.

The GNU C Compiler has a world wide reputation of being a very good compiler able to
deliver fast and reliable code. Furthermore, the design of the compiler is made with the
thought of making ports to several different machines possible. Naturally, that is the
most important reason for choosing GNU CC for this project. Since the GNU C Com-
piler is a freeware program, even the source code is freely accessible, and without the
source code the project would have been impossible.

The Thor microprocessor is designed for use in space borne embedded computer sys-
tems. The instruction set is stack oriented and this feature makes it unique compared to
other architectures available today.

One problem that made the project very interesting was the fact that GNU CC is intended
to work on traditional architectures with a set of registers. On Thor there are no register
due to the stack oriented instruction set.

DOCUMENT CHANGE RECORD

Changes between issues are marked with a left-bar

Issue Date Paragraphs affected Change Information

1 951204 all New document

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag3

TABLE OF CONTENTS Page
1 T (oo 18 o 1o o USRS AP
3 A = = Tod 2o | {0 ¥ o P PPRRSSPPN 7
1.2 Definition and goal of the GNU CC-ThOr Project.........ccooeviiiiiiiiiiiiiiiiiiieeeeee e 7
1.3 References to SIMIlar WOIKS.......coiiiiiiie e e e e e e e eees 8
2 Description of the processor and the COMPIIEr ... 9
2.1 Description of the Thor MICrOPrOCESSONccoviiiiiiieieccee e 9
2.1.1 MICIOPIOCESSON OVEIVIEW ...eeeveiiiiieeeeeeeeeeeeeeeeeeeiietsnnaaaaaeeeeeaaaaeeeeeeessesnnnnnnnnns 9
2.1.2 Architecture and iNStrUCTION SElL.......ccceeiieiiiiiiieeeeecr e e 10
2.1.3 The PIPEIINEo e e e e 12
2.1.3.1 Instruction fetCh Stageouuveeiiiiii 12
2.1.3.2 Address Generation STAgEecoevveeiiiiiiiiiiiiiiiee e 13
2.1.3.3 Operand Fetch Stageccoovviiiiiiiiiiice e 13
2.1.3.4 EXECULE SEAQE .. ceeeiiii ettt e eeeaans 13
2.1.4 PIpeling CONTIOL......cooiie e e e 14
2.1.5 DaAt@ CACNE ...ccoei ittt a e e e e 14
2.1.5.1 The update memory DUffer ... 15
P T o T V- 1 {0 £ 15
P2 TR T o (o To o[Vo U 15
P20 LT =Y 1 o] e (= =T o 1[0 o [PUUSR 15
2.1.6.1 Comparator FUNCHON...........cooiiiiiiiiiiiiiieee e 15
2.1.6.2 EDAC ..o 16
2.1.6.3 Program FIOW CONtrol...........cooiiiiiiiiiiiiiiiiiieen e 16
2.1.7 An example of @ ThOI PrOgIramuuu e 16
2.2 Description of the GNU C COMPIIETcooviiieiicceie e 17
2.2.] PaASSES. .t e e e et e e e e e 18
p A N R =1 £ o [P PPPPPUPPPPPPPP 19
2.2.1.2 RTL gENEIAtiON......ccvuiiiiiiiieeie e e e e ee et e e e e e e e e e e e e e eeeeeananns 20
2.2.1.3 Jump OPtMIZALION ... 20
2.2.1.4 REQISIEI SCAN.....uutiiiiiiiiiiiiiiii it e e e et e e e e e e e e e e e e 20
2.2.1.5 Jump threadingcooovvviiiiiiiiiiii e 20
2.2.1.6 Common subexpression elimination (CSE)ccccuvvvviiiiiiennnnnn. 20
2.2.1.7 LOOP OPLIMIZALION .cceeeiieiiiiieiei ettt 21
2.2.1.8 Stupid Register Allocationovvivuiiiiiiiiiiee e 21
2.2.1.9 Data flow @nalySiSccoeeeiiiiiiiiiiiii e 21
2.2.1.10 Instruction cOMbBINALION...........cevviiiiiiiiiees e e 21
2.2.1.11 Instruction schedulingcccoiiiiiiiiii e 21
2.2.1.12 Register class preferenCing.........cccuvveeeeiiieiiiiiiieeeeeeeee e 22
2.2.1.13 Local register alloCationeeueieiiiiiiiiiiieeeeeeee e 22
2.2.1.14 Global register allocationooovvviiiiiiiiiiiiiie e 22

2.2.1.15 RelOAING......coiiiiiiii s 22

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag4

TABLE OF CONTENTS Page
2.2.1.16 Instruction Scheduling, SECONd PASS......cvvviiiiiiiiiiiiiiiiieeiiiiiee 22
2.2.1.17 Jump optimization, SECON PASSuuuiiiieeeeeeeeeeeeeeeeeiiirriraa s 22
2.2.1.18 Delayed branch scheduling ..., 22
2.2.1.19 Intel 80387 Special PasS.........ccccuumiriiiiiiiiieiiieie e 22
2.2.0.20 FIN@L...uiiiiiiiiiiiiieeeee e 22
2.2.1.21 Debugging information OULPULeeuuemiiiiieeeeee e 23
2.2.2 RUNNING the COMPIIET w.eeeiiiiiiiiiiiieceeee e 23
2.2.2.1 OVerall OPLiONSuiiiii e 23
2.2.2.2 Debugging OPLIONSuuuiiiiieeeee e e e 24
2.2.2.3 OptiMIZING OPLIONSeveiieiiiiiiiiieeee e e e 25
2.2.3 Intermediate repreSENtatioNccceiiieeiiee e e 26
2.2.4 MaChing DESCIIPLION ...uuuueiiiiieee et e e e e e e e e es 27
2.2.4.1 The Machine Description file, ".md’-fileccccevviiiririiininnnns 27
2.2.4.2 Target Description Macros, .h-file........cccccoeiiiiiiiiccee . 33
3 GNU C Compiler for the Thor MICIOPIrOCESSOuuuuuuiiiieiieeeeeeeeeeee e e e e aeaaaes 35
3.1 PrODIBMS e a e e e e e e aarrae Diernnnns 3
T [= (=10 | PSP PPPPPPPPPPPI 36.........
3.2.1 The lack of registers inN TROKcooiiiiiiiicce e 37
3.2.2 Frame pointer @liMiNationoooiiiiiiiiiiiii e 38
3.2.3 The 8-bit addressing ProbIemueeieiiiiiiiiieeee 38
3.2.4 The representation of 'PSH’ and 'POP’oorriiiiiiiiiie e, 40
G R T o] 111 o I PR 42........
3.3.1 Specification of system dependent definitions...............coevvvviviiiiiiniieeeeeennn, 43
3.3.1.1 The basic C data tyPeS......uuciiiiiieiiieeeeeeeeeeeeecee et 43
3.3.1.2 Function calling iNterface............oooviieiiiiiiiiiiiiieee e 43
3.3.2 Target CONrol MACIOScoeii ittt 48
3.3.2.1 Thor-specifiC MACIOS.......uuuuiiiieiie e e et e e e e e e e eeeaeanns 48
3.3.2.2 LINK SECLONS.....ceiiiiiiiiiiiiseee e e e ettt e e e e e e e e e e e e e eeeeeeeeenees 48
3.3.2.3 Type and Storage layOuUL.............uuuureeiiiiiiiiiiiiieeee e 49
3.3.2.4 Registers and Register CIaSSES........uuuuuiiiiiiiiiieeeeeeeeeeeeeev 49
3.3.2.5 Stack and Callinguueeeemiiiiiiiiiiiiee e 51
3.3.2.6 AddresSing MOUESccoooiiiiiiiiiiiiiiiiiiie e 53
3.3.2.7 CoNditioN COUES.......cceiiiiiiiiiiiiiie ettt 54
3.3.2.8 AsSembIer fOrMatcoiiieiiiiieeeeee e 55
3.3.2.9 MISCEIIANEOUScvviiiiiiiiie e e e e e e e e e e eeeeeannees 56
3.3.2.10 Compiler options that are forced to be activated............................ 57
3.3.3 Machine description inStruction Patterns............ccoovvviiiiiiiiiiiiiiieeeeeeee e 57
3.3.3.1 An example of how a simple C program is handled 60
3.3.3.2 Data MoVe INSITUCHIONScceeeeeieiiiiiiciiiiiirii e 63

3.3.3.3 ArithmetiC OPerationS...........ooooiiiiiiiiiiiiiiiiee e 64

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag5

TABLE OF CONTENTS Page
3.3.3.4 LOQIC OPEIratiONScceeiiiiiiiiiiiiiiitie ettt ettt e e e e e 66
3.3.3.5 Negating and one-complementing..............ccoovvvviiiiiiiiiiieeeeeeeeee e, 67
3.3.3.6 Condition code setting INStrUCtIONSccevviiiiiiiiiiiiiiieeee e 67
3.3.3.7 Control transfer INStrUCHIONScccoeviieeeeiiiieeeeeerr e 68

R S N 11] o 11| (=2 PPPPPPRPRPPPRR 71
3.3.5 Optimizing the COUEcoeieeeeeeee e e e eeeeaeees 71
3.3.5.1 Machine-specific peephole optimizations.............ccccvvveeeieieienennnnn. 71
3.3.5.2 Delay Slot filliNg..........coorrrimiiiiiee e 73
3.3.5.3 Removal of unnecessary test/compare instructions....................... 74
3.3.6 Changes in the source files 0f GNU CC..........ooooiiiiiiiiiiiiiiiiiieeieeeeee e 74
B.3.0. 1 BUGS ittt 74
3.3.6.2 Thor adaptationSueiiiiiee oo e e e e eeeeeeeaannes 76
3.3.7 Auxiliary files in the compiler environmentccccciimiiiiiiiiiiiieeeeeeen 77
3.3.7.1 The 'crt0.asm’ fileccccuuiiiiiiiiiiiiie e 78
3.3.7.2 The 'thor-libgccl.asm’ file......cccooiiiiiiiiiiiii e 78
3.3.7.3 The'as’ and ’Id’ SCript fileScccuueiiiiiiiiiiiiii 79
3.3.7.4 The "t-thor file....ccooe i 79

I © 11 (o0 1 4 1= PO UP PP TUPPRPPIN O 7
3.4.1 GNU CC’s preference for regiStersuuuueeieeiiiiiiieeeeeeeee e 79
3.4.2 Comparison with the Oden Ada compiler..........cccoevieeiiiiiiiiiiiiee, 82
3.4.3 Interesting detailS..........cooeiiiiiiiiie e 88

3.5 REMAINING WOTK ...ttt e e e e e e e e e e e e e e e e e e s s e eannes 89
3.5.1 Standard C library fuNCtioNS..............ouuiiiiiiiii e 89
TR T - 1 o =1 o] o 90
3.5.3 The COMPIIETuiiiiiiieiiieeee e 90

3.5.3.1 DebUQ SUPPOIT ..o e 90
3.5.3.2 Simple improvements of the compiler ..., 91

4 (O] o Tod 1§ 1] T0] o TSRS 92....

4.1 Conclusions drawn from OUF WOTKcccooiiiiiiiiiiiieeeeeicese e e e 92
4.1.1 Advantages and drawbacks with trying to make a port..............cccceevvvvvnnnnns 92
4.1.2 Making a port to the ThOr MICrOPrOCESSONuuuriiiiiiiiiiiieieeeeeeeee e 93

A 1= o] 1=] [S 94
4.2.1 Deficiencies in the Thor ArchiteCturecccccviiiiiiiiiiiiiiiee e 94
4.2.2 DeficienciesS iN GNU CC......ooiiiiiiiiiiiiiiiiiis e e e 95

4.3 FULUIE IMPIOVEIMENTSuiiiiiiiiiiiiiieeee sttt e et e e e e e e aaeeeeaeeeaaaaaaannnes 95
4.3.1 Compiler eNhanCemMENLScoooiiiiiiiiiere e 95

4.3.1.1 8-DIt ChAraCtersSuuueiiiei e 95
4.3.1.2 Filling delay SIOtSccooeeiiiiiiiiiieiii e 96
4.3.1.3 Register alloCation..............uuuiiiiiiiiieieeeeceeeeeeee e 96

4.3.1.4 A different strategy with 'PSH’ and 'POP’.............ccooiiiiiiiiiininee 97

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag6

TABLE OF CONTENTS Page
4.3.1.5 Move the 'clobber-inStruction............cccoeeveiviieeeiiiiccree e 97
4.3.2 Supporting the GNU extended C...........cooiiiiiiiiiiiiiceiieee e 97
4.3.3 GNAT AN Gttt e e e e e e e e e e e e e eeeeeananne 97
A.3.3.1 G ———————————— 97
A.3.3.2 GIN AT e 98
4.4 Did we accompliSh OUN gO&aI7.......cooieiiuiiiiiiie e e e e e eeeeeenees 98
5 Definitions and abbreviations............ooo 99
6 =11 o] [ToTe | =1 o] o) V2SR 100....
APPENDIX A - Listing of machine dependent fileS ... 101
N A 1 T 2T S PPPPPPRRN 02....... 1
A2 TNOMN e —————————————— 115......
N N 1 T X oS 128......
N oF 1= 1= 1 o PSPPI 38....... 1
NS T 1 o PP PPPPPPPPPPPRPR 139....
N G 1 T o 10T Tt o3 = T o R UUPPPPPRRPPRRRR 140
R A - 1 142....
R T (o PP PPPRP 143...
APPENDIX B - Diff files of the changes in GNU CC SOUICE.........ccceeeeiiieeeeeeiiiieeeeiiiiiinn 144
B.1 reload.C VErsus rel0ad.C.Orgcooveiiiiiiiiiiiiiiii ettt e e e e e e e e e e e eeaaeeees 144
B.2 reloadl.c versus rel0adl.C.Orgcoooiiiiiiiiiiiiiiiiie et 144
G I (=To (o ol YT (S U SR £ <To] (o B o3 o] (o[RS 145
B.4 SIML.C VEISUS SIME.C.ONG . .ceuniiiiieeei ettt ettt e e e e e e e e e e e eenans 145
B.5 JUMP.C VEISUS JUMP.C.OIT .uuuuutititiitiieieeeeeeeaaeaaeeaeessesssssansnssbbsessssseeeeeeeeeeaaaeaeeesssssnans 146
B.6 function.c versus fUNCLION.C.OMG.........oovviiiiiiiie e e 147
B.7 config.sub versus config.SUD.OMG........uuueeiiiiiii e 148
B.8 configure VErsus CONfIQUIE.OIG......ccooiiiiiiiiiiiiiiiie ettt 148
APPENDIX C - INStruction Set fOr THOKiiiiii et 150
APPENDIX D - List Of C validation SUILESuuuueiiiiieei e e eeeeeeeeeeeeiiiiiness s e e e e e e e eaeeeeeeeeenennnnes 152

APPENDIX E - Installation of GNU CC fOr TR0 ..c..onieeie ettt 155

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag7

1 Introduction

Developing a compiler from scratch is unavoidably a project lasting over several years, so a
method to reduce this development phase is very desirable. Hence, modifying the GNU CC is one
direction that is fruitful to go, since it is freeware and therefore available to the public along with
the source code. Moreover the GNU CC designers have been far-sighted enough to make the
compiler fairly easy to port to many machines.

1.1 Background

Thor is a 32-bit microprocessor specially designed for space borne, embedded computer systems,
to use when tight physical space requirements and fast execution of compiled Ada programs are
required, since special hardware support for Ada tasking is added on-chip. Logic for error-detec-
tion and correction is also included directly on the chip. The basic idea to shrink the program size
IS to use a stack-based microprocessor, which requires less code size than comparable register-
based processors. Hence, program size is also decreased because each instruction comes in two
variants, one short (16-bit) and one long (32-bit). If one can utilize the short ones reasonably fre-
guently, less code space is required.

The development tools existing today include an assembler and an Ada compiler, which will be
formally validated during the latter part of 1995. It is likely that potential customers of the Thor
concept are interested in a C compiler to use with existing programs while gradually switching to
the Ada compiler when writing new programs.

To develop such a C compiler from scratch, or buy a commercial product with the need for many
changes, would be unrealistic with the limited production volume of space-borne applications in
mind.

A suitable compromise is therefore to make an attempt to port an existing compiler, the GNU CC,
to produce code for Thor. GNU CC is so called freeware, which means that everyone can obtain
and install the compiler without any fee at all, since even the source files are public. It has been
developed during several years by computer idealists (believing all software should be free to
copy), primarily within universities. One can make any changes one might wish, including port-
Ing it to new machines, with the condition that the new product is also made available to the gen-
eral public.

GNU CC has a well-defined intermediate language, and is fairly well-documented. The compiler
itself is designed to make it possible to do numerous ports with no, or minimal changes to the
source code. Since the compiler uses this standardized intermediate language, various front ends
have been developed to work with the back end. Languages besides C (GNU CC) supported in
this way, include: Ada (GNAT), Modula-2 and C++ (G++). If one succeeds in porting GNU CC to
Thor, it means that one gets at least three other compilers automatically.

If the reader is already familiar with the Thor microprocessor and the GNU C Compiler, it is not
necessary to read sectidrDescription of the processor and the compildthis chapter just
gives an introduction to the processor and the compiler.

1.2 Definition and goal of the GNU CC-Thor project

The goal of the project is to make the GNU C Compiler deliver trusted code for the Saab Ericsson

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag8

Space microprocessor Thor. Primarily, the compiler should work for the C language, and as a sec-
ondary goal it should work with an arbitrary front end developed for the compiler, including Ada
and utilizing the exception facility and the built-in real-time hardware support, i.e. tasking
instructions in the instruction set. Full documentation of the project also has very high priority,
since further development of the project is likely to occur.

1.3 References to similar works

GNU CC itself has been ported to numerous machines of various kinds, including now obsolete
machines as well as hyper-modern VLIW (Very Long Instruction Word) and superscalar RISC
machines. Moreover, a common denominator among these is that they have some sort of register
set in their architecture. Even a machine like the iX86 machine, which is in fact an accumulator
processor, controls a set of registers, but some of them are indeed dedicated to certain tasks. These
machines seem to suite GNU CC rather well, and it really shows that it is a very flexible compiler
able to deliver high quality code to an impressive mix of processors.

As far as we know, the GNU CC has never been ported to a stack-based architecture, which
means that this project is moving into unexplored territory. This is maybe not so very surprising,
since most of the architectures evolved during recent years fall into the register-machine category,
so the possibility to develop such a port has been limited.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag9

2 Description of the processor and the compiler

In order to comprehend our implementation of the GNU CC port to the Thor microprocessor, the
readers are required to have an insight into the target machine of the compiler as well as the com-
piler itself. Hence, the following sections will give a brief introduction to both.

2.1 Description of the Thor microprocessor

The Thor microprocessor is a general-purpose, single-chip 32-bit stack-oriented RISC-architec-
ture. The microprocessor is intended for embedded computer systems with high performance
requirements in real-time applications, combined with fast execution of programs written in Ada.
The main features of the processor include:

» 32-bit RISC architecture with four stage pipeline, and a stack oriented instruc-
tion set.

» Ada support with fast rendezvous and interrupt handling.
 Fault tolerance support by concurrent error detection and correction (EDAC).
* Integer and IEEE standard 754 floating-point processing on-chip.

Each of the blocks of Thor will be described in detail in the following sections.

2.1.1 Microprocessor overview

The Thor microprocessor is designed for real-time embedded computers specially made for, and
used in space borne systems, where high performance, low power consumption and maximum
reliability are desired. The processor is a 32-bit RISC processor, with a stack-oriented architec-
ture. Both integer and IEEE-754 floating-point arithmetic instructions are included in the instruc-
tion set.

Thor is developed to provide hardware support for the Ada programming language, in order to
offer low interrupt latency and fast task rendezvous. The added hardware speeds up many of the
runtime checks defined by the Ada language. Because the instruction set is stack oriented, the
memory requirements of the programs are reduced. In the computer systems for which Thor is
intended, a smaller memory will often result in significant savings in terms of mass, power con-
sumption and reliability. Error detection facilities are included on-chip, offering fail-stop opera-
tion of the microprocessor itself, and the system memory is provided with an EDAC feature.

The design provides support for testing, using a Test Access Port (TAP) implemented according
to IEEE-1149.1 standard. Access to the chip pins and the chip internal state is also allowed by the
TAP, using a boundary-scan register. Non-intrusive real-time debugging, built-in In Circuit Emu-
lation (ICE) and improved system level verification and testing support are benefits acquired due
to the Test Access Port.

Thor uses a memory interface with separate address and data buses, and can access a 2 Ghyte
memory. A memory-mapped I/O area occupies the top half of the memory. Each memory read
cycle can be completed in one processor clock cycle. A 32-bit word will be transferred each mem-
ory access. No virtual memory is supported by the microprocessor, due to the fact that it is not
possible to restart instructions in the pipeline.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag10

2.1.2 Architecture and instruction set

The architecture offers a stack-oriented instruction set. The mnemonics, formats and clock cycle
requirements are listed APPENDIX C - ’Instruction set for TharEach instruction is either two

bytes (short) or four bytes (long). The first byte represents the instruction code, and the following
byte (or bytes) is the parameter. The parameter can be either a two’s complement signed integer or
an unsigned integer. The most significant bit in the instruction code defines if an instruction is

long or short, and the next bit indicates whether or not an instruction is signed or unsigned. The
operation itself is defined by the remaining six bits. All 256 possible instruction codes are used.

O1eeeeee Signed _128..127 | o,

OO eeeeeel Unsigned 0..255 2h

1 1 o e e 0 0 o S|gned —223... (223—1) 4a

1 0e¢eceee Unsigned 0...(2%4-1)

2b

Figure 1 The different formats of Thor’s instructions set.

The block diagram belowsée Figure 2, The Thor Chip Block Diagraaif the Thor chip shows
the basic parts of which the processor is built; the pipeline stage, the EDAC facility, the Ada sup-
port hardware and the buses.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pagll
B
EDAC us
Control
Status
B ———
EDAC BUS Bus
Data CONTROL Arbitration
B e

1=

Data out

Instr.

Instr. Instr.
AG st I OF [Inst*
Cache

TOS Src. - Dst. -
BOS

Dst. Operand
EOS -
TP
EAR

EX

TOP

RR

SR

CR

IR

Exception
—_—

Status

_>

Pipe
Control

Test Acc.

Port

-a—

TAP

Register Bus

Control

Debug

Error
Detection

ER
RTL
RTM
SIR
SOR

Ada
Support

Figure 2 The Thor Chip Block Diagram

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pagl12

2.1.3 The pipeline

The chip’s internal instruction pipeline consists of four separate stages:
* Instruction Fetch Stage (IF)
» Address Generation Stage (AG)
* Operand Fetch Stage (OP)
» Execute Stage (EX)

On each clock cycle, an instruction enters the IF stage and proceeds through the pipeline. The
pipeline may be stopped, or stalled when some special situations occur. During a stall the infor-
mation in the pipeline is maintained, until the reason of the stall is solved. A pipeline stall may
occur when:

» The IF stage has no instruction ready for the AG stage

» The OF stage is waiting for a read operation of data from memory

» The EX stage is performing a multicycle instruction

* The EX stage is waiting for a 1/0O write operation of data to memory

» The EX stage is accessing ER, RTL or RTM, while they are updated

» The EX stage is performing a scheduling, when a dispatch is about to occur

» The UM buffer (data cache write-back buffer) is full

» when a HLT instruction is executed
Stalling can also occur during DMA and when assertion of some special instruction is performed.
2.1.3.1 Instruction fetch stage

The instruction fetch stage is equipped with four 32-bit instruction prefetch buffers, in order to
prefetch instructions during free bus cycles. The Prefetch Program Counter (PPC) points out the
next instruction to be fetched from the memory. The Program Counter (PC) is also included in the
IF stage. PC is a halfword counter placed in a register, and the instruction pointed out by PC is
located in the IF stage.

The IF stage continuously and cyclically reads instructions into the prefetch buffers, and each

time a bus access has been completed the PPC is incremented. No access will be attempted when
there is a control transfer instruction in the OF or EX stage and there are two words or more in the
prefetch buffers. This behaviour is explained by the fact that there is a possibility that an order to
fetch instructions from another place in memory could be issued by the control, and if so, the con-
tents in the prefetch buffer would be obsolete.

The IF stage sends the next instruction and its parameter to the AG stage, as long as the pipeline is
not stalled. PC is incremented either by one for short instructions or by two for long instructions.
Whenever a control transfer instruction is executed the prefetch buffers are flushed, and both PC
and PPC are loaded with the jump target address.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag13

2.1.3.2 Address Generation Stage

The AG stage computes two addresses, the source and the destination address. Some instructions
do not have a source address, for instance; immediate instructions. For these instructions the AG
stage will pass the instruction parameter, which is the immediate value, as either the source or
destination address.

The AG stage contains the following registers:
e Top Of Stack (TOS)
» Beginning Of Stack (BOS)
» End Of Stack (EOS)
» Task pointer

The destination and source addresses can be computed in several ways, depending on the instruc-
tion. When a TOS-relative address is needed an offset is added to TOS, or if a PC-relative address
is desired an offset is added to the PC, a final variant is adding the TOP register (the value of

TOS) with TOS (or some other parameter). Some other possibilities exists but they include com-
putations made with the Task Pointer register (TP) and are therefore only present in Ada pro-
grams.

The address computations using the TOP register, will use what is termed indirect delayed
addressing, i.e. the indirect address computation is performed in the EX stage, storing the indirect
address in TOP. Therefore this computation is compelled to be completed two instructions prior to
the instruction using the indirect address (in TOP) as a part of its source or destination address.

In order to check if the computed addresses are located in the legal address space, the AG stage
will perform checks on the addresses, using BOS and EOS. The instructions accessing data in the
stack will be compared with either BOS or EOS, and an exception will be raised if a violation is
detected.

2.1.3.3 Operand Fetch Stage

The operand fetch stage will fetch the instruction operand pointed out by the source address pro-
vided by the AG stage (if required by the instruction). When the instruction operates on immedi-
ate operands, the immediate value is passed from the AG stage as the source or destination
address. Now the operand is passed from the OF stage further on into the EX stage, along with the
destination address (which is simply delivered through this stage). If possible, the operands will
be fetched from the cache, and if they are not found there they are fetched from the memory. No
memory access will take place when the instruction has an immediate operand.

2.1.34 Execute Stage

The EX stage executes the instructions, using the'Athe multiplier and the Barrel Shifter, to
compute logical and integer as well as floating point data. These units allow most instructions to
execute in one clock cycle. The OF stage operand is redundant in cases where the instructions
require no operand, and therefore ignored. For instructions needing operands, the EX will use the
operand sent from the OF stage, and optionally the contents in TOP. The result produced is gener-

1. ALU stands for Arithmetic Logic Unit. In this part of the processor most computations are made.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pagl4

ally passed to TOP, but is also written to the destination address. Depending on whether or not the
address is found in the cache, it is written to the cache, or to the memory. The EX stage contains
the following registers:

» Top Register (TOP)

* Result Register (RR)
Status Register (SR)

» Configuration Register (CR)

Identification Register (IR)

The TOP register will always hold the value at the top of the stack. All instructions which pop the
stack will fetch the new value of the TOP register. The source address of the AG stage will be the
new TOS, and this new value will then be fetched by the OF stage.

The RR register is only used by instructions delivering 64-bit results, to hold the most significant
word.

The SR register holds the condition codes which are set by compare and arithmetic instructions,
and this register in turn is used by the conditional jump instructions.

To allow setting of parameters to control overall chip behaviour, there is the CR register. Things
that the register controls include: Clock frequency, Cache control, Bus timeout and more.

The ID register is provided to uniquely identify the chip, according to the IEEE-1149.1 standard,
and includes chip version number, manufacturer, identity and part number.

2.1.4 Pipeline control

When executing normally, the instructions will proceed throughout the pipeline stages, and once
in a while cause stalls, as discussed. When the EX stage is executing a control transfer instruction,
the program counter in the IF stage will be changed. Now there are already two instructions in the
pipe that will be executed before instructions fetched from the new locations arrive to the EX
stage. The strategy to solve this problem is to use delayed control transfer. This way no perform-
ance loss will occur unless any of the two delay slots cannot be used for other instructions, and
therefore must be filled by NOP instructions. There are a number of rare special occurrences
where the pipeline must be otherwise controlled, in addition to control transfer.

2.1.5 Data cache

The data cache is designed as a direct mapped, write-back cache, with a size of 32 words. Each
line in the cache consists of:

» The actual data word, which is a 32-bit word.
» A 23-bit tag.
 Avalid flag, which is set when the data word is up to date.

» A corresponding dirty flag, which indicates when a data word has been modified
and write-back has not been performed.

Only the lower half of the memory is cacheable, and therefore one bit in the tag is always set to

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pagl5

zero.
2.151 The update memory buffer

The UM buffer is a data cache write-back buffer, used when the line is needed for a word at a new
address, at the same time as the dirty flag in the line is set. The new word may therefore be
directly passed to the desired line, and the word currently occupying the line can be passed to the
buffer if its dirty flag is set. The UM buffer will be emptied by writing out the data to the memory.
Since the buffer can only hold one word there could be a problem if the buffer is needed and its
contents has not been written to memory yet. The solution is to stall the pipe until the data word in
the buffer has been flushed to memory.

2.15.2 Hazards

The cache works closely together with the pipeline and consequently structural hazards or con-
flicts may occur. The hazards and interlock situations that are possible includes:

* When data is written into the cache, to the line at which a simultaneous check for
another data word is done.

* When the OF stage has read an operand, at the same address the EX stage writes
data into the cache. The OF stage now contains an obsolete operand.

» When data that has been transferred to the UM buffer, and a read operation is
issued for that data.

The cache controller detects and resolves all of these possible hazard situations by performing
various checks using the data being written and bypassing wanted data directly from buffers and
pipe stages to the functional unit desiring that data.

2.1.5.3 Snooping

In multi-processor systems and systems using DMA, consistency between data in memory and
data in cache must be solved in some way, and Thor uses snooping for this purpose. When an
external unit performs a memory read operation, and the cache has the correct version of the data
available, the microprocessor will signal this, and then provide the data on the system memory
bus. In the case of a write operation, the cache will check whether the data word is in the cache
(check if the valid flag is set), and if that is the case the data word will be invalidated.

2.1.6 Error detection

Error detection in space-borne computer systems is of the highest concern, and Thor is equipped
with various techniques dealing with this problem.

2.1.6.1 Comparator Function

A computer system with high fault tolerance demands, can be equipped with two Thor microproc-
essors connected in parallel. One chip is designed to be a slave, and one to be the master. The
slave will never drive the system memory bus, but only the master. During the masters execution,
the slave will compare its internally produced result with those from the other chip. A high error
detection coverage of both chips can be obtained when using this dual configuration.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag16

2.1.6.2 EDAC

The EDAC (Error Detection And Correction) facility works on the system memory data bus, and
will detect all two-bit errors and correct all one-bit errors. Seven check bit signals are used in
addition to the 32 data bus signals. The EDAC is implemented with a modified Hamming code.
Depending on which error the EDAC detects it will assert certain signals, such as CDE (Correcta-
ble Data Error) and UDE (Uncorrectable Data Error). Even during DMA and when HLT is
asserted, the EDAC will work.

2.1.6.3 Program Flow Control

Program flow control is performed by checksumming the instruction codes, until a NOP instruc-
tion is reached. Every NOP instruction will compare the calculated checksum with its parameter,
and then eventually reset its checksum. If the parameter and the checksum are not identical, an
error signal will be emitted. The program flow checksum is calculated as an arithmetic sum of the
instruction codes modulc®2

2.1.7 An example of a Thor program

Since the Thor microprocessor is based on a stack architecture, and thus does not contain any gen-
eral registers, the way of writing assembler programs differs a lot from what most programmers

are used to. Instead of loading registers with data and performing operations utilizing the register
set, one works using the stack with the use of the data move instruetgiisahd 'POP. When
performing a PSH (often stack relative, i.e. with the parameter as an offset from the stack-top)

one pushes a new value onto the stack and thus the top-of-stack pointer is decremented by one
(the stack grows towards lower addresses). Also, the value at the top-of-stack resides in the
"TOP-register.

The following example should give the readers unfamiliar with writing assembler code for a stack
machine a first insight to the art of Thor programmseg(APPENDIX C -, Instruction set for
Thor).

code SECT 1,R,C ;Assembler directive in which sec-
;tion to place following insns.
LCO: ;A label
DATAF 6.66e+00 ;One word of constant float data
_main: ;Label to a function
MTOS -7 ;Reserve space for 7 words on stack
PSHI 666 ;Push immediate value '666’
POP 7 ;Pop it 7 steps back in the stack
PSH LCO ;Push float data via reference
POP 6 ;Pop it 6 steps back in the stack
PSH 5 ;Push the same value again
INT :Make it an integer
POP 2 ;Pop it 2 steps back in the stack
CODE DELETED*
L5: ;A label in the code

PSH 4 ;Push word from 4 steps back

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pagl7

ADDI 1 ;Add "1’ to pushed word

MUL 9 :Multiply with word 9 steps back

POP 5 ;Pop it back to the stack

CODE DELETED

RET 7 ;Return from the function.

POP 8 ’RET’ has two delay slots, which

MTOS 7 ;are filled with stack cleaning
;instr. and popping the result to
;the caller.

Example 1 A sample of a Thor program.

To run this program on the Thor processor one must first assemble this text to an object file fol-
lowing the IEEE standard, using the Thor assembler. This code is so called relocatable, i.e. con-
taining no absolute addresses. If the text contains references to external variables one must use the
linker in order to deal with unresolved references, and thus merge all necessary object files to one.
Finally it is time to use the loader to fill the embedded computer system’s memory with the now
executable program. The loader converts the relocatable code’s relative references to absolute
addresses according to the system’s address space.

2.2 Description of the GNU C compiler

The main goal of GNU CC, according to GNU’s father Richard Stallman, is to make a good and
fast compiler for machines in the class that the GNU system aims to run on: 32-bit machines that
address 8-bit bytes and have several general registers. Elegance, theoretical power and simplicity
are only secondary.

GNU CC gets most of the information about the target machine from a machine description which
gives an algebraic formula for each of the machine’s instructions. This is a very clean way to
describe the target. Unfortunately, the compiler sometimes needs information that is difficult to
express in this fashion. The purpose of the portability is to reduce the total work needed on the
compiler; it was not of interest for it's own sake.

GNU CC does not contain machine dependent code, but it does contain code that depends on
machine parameters such as endianness (whether the most significant byte has the highest or low-
est address of the bytes in a word) and the availability of autoincrement addressing. In the RTL-
generation pass (Register Transfer Language, the intermediate language used in GNU CC), it is
often necessary to have multiple strategies for generating code for a particular kind of syntax tree,
strategies that are usable for different combinations of parameters. Often it is hard to address all
possible cases, but a sound strategy is to put emphasis on the common ones and make them work
as well as possible. As a result, a new target may require additional strategies. One will know if
this happens because the compiler will calidrt ’. Fortunately, the new strategies can be added

in a machine-independent fashion, and will affect only the target machines that need them.

What one need to do when trying to make a port to the GNU CC is to write a few files that tells
the system and the compiler what the architecture looks like. One file that needs to be written is a
header C-file filled with macros that in detail explain the microprocessor’s features, such as
number of registers and how one is allowed to use them, i.e. if there are certain classes of registers

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag18

that one is only supposed to use for certain purposes. Addressing modes allowed on the processor
and what kind of addresses accepted are things that are very important to explain in the right way,
otherwise the compiler will produce faulty assembler code which uses addressing modes incor-
rectly. Naming of the macros must be done in the GNU standard way, i.e. you cannot invent a new
name for a macro, since those are used in the source code of the compiler and if one macro is
missing it is impossible to build the compiler (which is also written in C). Some macros can be
omitted in the file, and if so, the compiler uses an appropriate default value. However, there is a
well-defined set of macros the compiler cannot do without.

Another file that is necessary to write is the so called '-file (machine description file), where,

in principle, the machine’s instruction set is defined. This file is written in a special syntax that is
a textual interpretation of an RTL-object. Each object represents a single (or a sequence of)
assembler instruction(s). The GNU CC has a predefined set of mandatory RTL-objects that one
must support in thernd’-file, otherwise the compiler will not build. The ideal port would have a

one to one mapping between RTL-objects and assembler instructions, to give the compiler more
opportunities in optimizing and rescheduling the code. In each RTL-object one defines which
addressing modes and registers the object can use when outputting the code. If say, the memory
reference, interfer with what the compiler had in mind, it tries to rearrange and transform the code
to use legal referencing. RISC machines in particular have a limited way of using data in instruc-
tions, since they are load-store architectures and thus want to load data into registers before using
them in arithmetic operations.

In the ~md’-file one also describes if the machine possesses special facilities such as extra func-
tional units, if so the compiler can schedule the code in such a way that utilization of all functional

units is maximized. One can also define which instructions require delay slots. Usually all control

transfer instructions fall into this category, i.e. branch, jump and call instructions.

The compiler attempts to translate the whole parsed program into an RTL-representation made
exclusively of the mandatory RTL-objects, and if this is not possible the compiler will crash. If

the architecture does not contain an assembler instruction as powerful as its corresponding RTL-
object, there is a possibility, in therid'-file, to split the RTL-expression into a sequence of sev-

eral other, more suitable, objects. This is often the case in modern RISC machines. The most basic
compiler optimization one can make is the so called peephole optimization, also defined in the
".md’file.

Additional files are often written, but all they contain are help-functions to the files described
above, so there are in fact only two machine dependent files to be written in order to make a port
work. This makes it easier to port GNU CC to more machines than any other compiler, since usu-
ally one does not need to alter the source code of GNU CC.

2.2.1 Passes

The parsing pass is invoked only once, to parse the entire input. The RTL intermediate code for a
function is generated as the function is parsed, one statement at a time. Each statement is read in
as a syntax tree and then converted to RTL; then the storage for the tree of statements is
reclaimed. Storage for types (and the expressions for their sizes), declarations, and a representa-
tion of the binding contours and how they nest, remain until the function is finished compiling;
these are all needed to output the debugging information. An informative flow chart below shows

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag19

how a compiled program travels through all the different stages in the compiler (it is a bit simpli-
fied, for full coverage see the GNU CC documentation).

RTL Gen.

Gl. Reg Al.

Optimizing? Reloading

No

Jump Op. | IStup. Reg. Al. | Optimizing?

Yes
Instr. Sch. 2
Jump Op. 2

Del. Br. Sch.

Yes
Data Flow A i387 coproc. adaption? < >
No
Instr. Sched.
Reg. Cl. Pref.

Loc. Reg. Al.
'
'
'
'

Final Pass

Deb. Inf. Out.

Figure 3 A simplified flow chart of the stages in the compiler.
Each of the following sections deals with one pass of the compiler.
2211 Parsing

This pass reads the entire text of a function definition, constructing partial syntax trees. The tree
representation does not entirely follow C syntax, because it is intended to support other languages
as well. Language-specific data type analysis is also done in this pass, and every tree node that
represents an expression has a data type attached. Variables are represented as declaration nodes.
Constant folding and some arithmetic simplifications are also done during this pass.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag20

2.2.1.2 RTL generation

This is the conversion of the syntax tree into RTL code. It is actually done statement-by-statement
during parsing, but for most purposes it can be thought of as a separate pass. This is where the
bulk of target-parameter-dependent code is found, since often it is necessary for strategies to
apply only when certain standard kinds of instructions are available. The purpose of named
instruction patterns is to provide this information to the RTL generation pass. Optimization is
done in this pass foif’ ’-conditions that are comparisons, boolean operations or conditional
expressions. Tail recursion is detected at this time also. Decisions are made about how to best
arrange loops and how to output 'switch’ statements.

Also, the file insn-emit.c ', generated from the machine description by the proggeme-
mit ’, is used in this pass. The header filasn-flags.h "and’insn-codes.h ', generated
from the machine description by the progragenflags ' and 'gencodes ’, tell this pass
which standard names are available for use and which patterns correspond to them.

Aside from debugging information output, none of the following passes refers to the tree structure
representation of the function (only part of which is saved). The decision of whether the function
can and should be expanded inline in its subsequent callers is made at the end of RTL generation.
The function must meet certain criteria, currently related to the size of the function and the types
and number of parameters it has. Note that the function may contain loops, recursive calls to itself
(tail-recursive functions can be inlined), gotos, in short, all constructs supported by GNU CC.

2.2.1.3 Jump optimization

This pass simplifies jumps to the following instruction, jumps across jumps, and jumps to jumps.

It deletes unreferenced labels and unreachable code, except that unreachable code that contains a
loop is not recognized as unreachable in this pass. (Such loops are deleted later in the basic block
analysis.) It also converts some code originally written with jJumps into sequences of instructions
that directly set values from the results of comparisons, if the machine has such instructions. Jump
optimization is performed two or three times. The first time is immediately following RTL gener-
ation. The second time is after C3e€ 2.2.1.6, Common subexpression elimination (CB&)

only if CSE says repeated jump optimization is needed. The last time is right before the final pass.
That time, cross-jumping and deletion of no-op move instructions are done together with the opti-
mizations described above.

2214 Register scan

This pass finds the first and last use of each register, as a guide for common subexpression elimi-
nation.

2.2.15 Jump threading

This pass detects a conditional jump that branches to an identical or inverse test. Such jumps can
be 'threaded’ through the second conditional test.

2.2.1.6 Common subexpression elimination (CSE)
CSE means that the compiler scans through the program in search of duplicate expressions, and if

1. Constant folding means that constants defined in the program will be inserted where they are used in the
program.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag21

the value of an expression is known earlier in the program it is thus not necessary to compute the
expression once more. This pass also does constant propagation. If constant propagation causes
conditional jumps to become unconditional or to become no-ops, jJump optimization is run again
when CSE is finished.

2.2.1.7 Loop optimization

This pass moves constant expressions out of loops, and optionally does strength feshuttion
loop unrolling as well.

If flag ’-frerun-cse-after-loop " was enabled when compiling, a second common subex-
pression elimination pass is performed after the loop optimization pass. Jump threading is also
done again at this time if it was specified.

2.2.1.8 Stupid Register Allocation

Stupid register allocation is performed at this point in a honoptimizing compilation. It does a little
data flow analysis as well. When stupid register allocation is in use, the next pass executed is the
reloading pass; the others in between are skipped. This pass will execute faster than compilation
in optimized mode.

2.2.1.9 Data flow analysis

This pass divides the program into basic bléc(bsnd in the process deletes unreachable code);

then it computes which pseudo-registers are live at each point in the program, and makes the first

instruction that uses a value point at the instruction that computed the value. This pass also deletes
computations whose results are never used, and combines memory references with add or subtract
instructions to make autoincrement or autodecrement addressing.

2.2.1.10 Instruction combination

This pass attempts to combine groups of two or three instructions that are related by data flow into
single instructions. It combines the RTL expressions for the instructions by substitution, simpli-
fies the result using algebra, and then attempts to match the result against the machine description.

2.2.1.11 Instruction scheduling

This pass looks for instructions whose output will not be available by the time that it is used in
subsequent instructions. (Memory loads and floating point instructions often have this behaviour
on RISC machines). It re-orders instructions within a basic block to try to separate the definition
and use of items that otherwise would cause pipeline stalls. Instruction scheduling is performed
twice. The first time is immediately after instruction combination and the second is immediately
after reload.

1. Strength reduction means manipulation with the arithmetic operations while maintaining the correct se-
mantics of the program. For example, converting a multiplication to an addition.

2. Ifaloop in a program is deterministic in terms of knowing in advance how many times a loop will execute,
the loop can be unrolled, i.e. the jump instructions are omitted and all the instructions in the loop are repeated
the same number of times the loop is to be executed.

3. A basic block is a part of a program where there exists no jump into or out of the sequence except the be-
ginning and the end of the instruction sequence.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag22

2.2.1.12 Register class preferencing
The RTL code is scanned to find out which register class is best for each pseudo register.
2.2.1.13 Local register allocation

This pass allocates hard registers to pseudo registers that are used only within one basic block.
Because the basic block is linear, it can use fast and powerful techniques to do a very good job.

2.2.1.14 Global register allocation

This pass allocates hard registers for the remaining pseudo registers (those whose life spans are
not contained in one basic block).

2.2.1.15 Reloading

This pass renumbers pseudo registers with the hardware registers numbers they were allocated.
Pseudo registers that did not get hard registers are replaced with stack slots. Then it finds instruc-
tions that are invalid because a value has failed to end up in a register, or has ended up in a register
of the wrong kind. It fixes up these instructions by generating code to reload the problematical
values temporarily into registers. Additional instructions are generated to do the copying. The
reload pass also optionally eliminates the frame pointer and inserts instructions to save and restore
call-clobbered registers around calls.

2.2.1.16 Instruction Scheduling, second pass

Instruction scheduling is repeated here to try to avoid pipeline stalls due to memory loads gener-
ated for spilled pseudo registers.

2.2.1.17 Jump optimization, second pass

Jump optimization is repeated, this time including cross jun’rpﬁng deletion of no-operation
move instructions.

2.2.1.18 Delayed branch scheduling

This pass attempts to find instructions that can go into the delay slots of other instructions, usually
jumps and calls.

2.2.1.19 Intel 80387 special pass

Conversion from usage of some hard registers to usage of a register stack may be done at this
point. Currently, this is supported only for the floating-point registers of the Intel 80387 coproces-
sor.

2.2.1.20 Final

This pass outputs the assembler code for the function. It is also responsible for identifying and
removing unnecessary test and compare instructions. Machine-specific peephole optimizations
are performed at the same time. The function entry and exit sequences are generated directly as
assembler code in this pass; they never exist as RTL.

1. Cross jumping means detecting identical sequences of instructions followed by jumps to the same place,
or followed by a label and a jump to that label, and replacing one with a jump to the other.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag23

2.2.1.21 Debugging information output

This is run after final because it must output the stack slot offsets for pseudo registers that did not
get hard registers.

2.2.2 Running the compiler

GNU CC normally does preprocessing, compilation, assembling and linking, when invoking it
with commandgcc 'L followed by a filename. There are numerous compiler options with which
one is able to control and steer each stage in the compilation process in detail. For example one
often wants to stop the compilation after the assembler has run, in order to get a relocatable object
file which one can, in a later stage, link together with other object files. Some options control the
preprocessor and others the compiler itself. You can mix options and other arguments. For the
most part, the order you use does not matter. Order does matter when you use several options of
the same kind. The following subchapters will give a brief introduction to the most useful options
when running the compiler.

There are lots of options not mentioned in the following sections, dealing with the assembler,
linker, how rigorous the compiler should be about the syntax in the programs etc. Those few of
the readers who need all these options should take a look in the GNU CC complete documenta-
tion.

2.2.2.1 Overall options

This section describes the options controlling the output, i.e. if one wants an executable, object,
assembler or preprocessed source. For any given input file, the compiler assumes certain things
about what kind of compilation to do depending on the suffix. Below follows a table with the
GNU CC'’s way of interpreting the suffixes.

Table 1 Action depending on suffix

Suffix Action to be taken

"¢’ C source file that must be preprocessed.

C source file which should not be preprocessed.

"h’ C header file (not to be preprocessed or compiled].

.m’ Objective C code.

Al C++ source file which should not be preprocessed,

.cc’ C++ source file that must be preprocessed. Suffix
".C’ '.cc 'is the preferred one to use.
".cpp
s’ Assembler code.
.S’ Assembler code which should be preprocessed.
OTHER An object file to be fed directly into linking

1. The GNU CC cross compiler for Thor is invoked with the commgat-gcc

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag24

If one want to access only some stages of the compiler one can alternatively use flags to be
inserted on the command line. Here follows a table with the most important options.

Table 2 Options to control the compilations

Option Action to be taken
-c’ Compile and assemble the source files, but do not link. An object file for eagh
source file given is the ultimate output.
S’ This option inhibits the assembly part of the compilation. An assembler code file

is the output for each non-assembler input file. The assembler file name are|made,
by replacing the files suffixes bys’’ (default behaviour).

"-E’ Stop after the preprocessing stage. The output is in the form of preprocessed
source code, which is sent to the standard output.

"-oFILE ' | Place outputin fileFILE . This applies regardless to whatever sort of output is
being produced, whether it be an executable file, an object file, an assembler file or
preprocessed C code. Unless one are producing an executable file, it makes no

sense applying this option on more than one file. The default name of the executa-
ble file when not using this option is.out ’

executed. This includes various version numbers of the compiler, preprocessor
etc.

v’ For each stage of the compilation, print on standard error output the comm%zds

2.2.2.2 Debugging options

GNU CC permits various special options that are used for debugging either your program or GNU
CC itself. The following table lists the most important debugging features in the compiler.

The options starting with a ’-d’ followed by a single additional letter tells the compiler to make
debugging dumps during compilation at times specified by the last letter in the option command.
Primarily this is used when debugging the compiler. The debugging dump file’'s name is con-
structed by appending an extra suffix to the name of the file. Those options do not affect the com-
pilation in any way, except that the compilation may run a little bit slower when outputting to the
files.

Table 3 Debugging options to be incorporated when compiling

Debug option Action to be taken
-g’ Produce debugging information in the operating system's native format.
-p’ Writing extra profile information suitable for the analysis progranof .
"-pg’ Writing extra profile information suitable for the analysis progrgprof .
-a’ Generate additional code to write profile information about basic blocks. Esgen-
tially it will count the number of times each basic block is entered.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag25
Table 3 Debugging options to be incorporated when compiling
Debug option Action to be taken
-dMm’ Dump all macro definitions, at the end of preprocessing, and write no output.
"-dN’ Dump all macro names, at the end of preprocessing.
"-dD’ Dump all macro definitions, at the end of preprocessing, in addition to normal out-
put.
-dy ’ Dump debugging information during parsing, to standard error.
-dr Dump after RTL generation, té-ILE.rtl ’
-dx Just generate RTL for a function instead of compiling it.
-dj Dump after first jump optimization, td-1ILE.jump '
-ds’ Dump after CSE, toFILE.cse .
-dL’ Dump after loop optimization, td=ILE.loop '
-dt Dump after the second CSE pass,Rt_E.cse2 .
-df Dump after flow analysis, tdFILE.flow ’
"-dc’ Dump after instruction combination, to the filelLE.combine '
-dS’ Dump after the first instruction scheduling passRihE.sched .
-dl Dump after local register allocation, tBILE.Ireg ’
-dg’ Dump after global register allocation, tBILE.greg '
"-dR’ Dump after the second instruction scheduling pas$;itcE.sched2 .
-dJ’ Dump after last jump optimization, t&ILE.jump2 ’
-dd’ Dump after delayed branch scheduling, E6LE.dbr
-dk ’ Dump after conversion from registers to stack RbE.stack .
-da’ Produce all the dump files listed above.
"-dm’ Print statistics on memory usage, at the end of the run, to standard error.
-dp”’ Annotate the assembler output with a comment indicating which pattern and|alter-
native was used.

Not all of the debugging options are listed in the table, but those remaining are very special and
virtually never used in reality. Those interested in a full coverage should read the GNU CC docu-

mentation.

2.2.2.3 Optimizing options

The most common options when compiling are the optimizing optiédX;’ where X' stands
for a number between 0 and 3. With th®0’ option one explicitly says thaio optimizing
should occur (this is equivalent to giving nR®X’ option at all), and with all the other options

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag26

optimizations of various degrees are performed. Depending on the option given, the compiler per-
forms rescheduling and transformations to make the code run faster (fast code is usually priori-
tized over small code size). The most apparent optimizations are rescheduling of jump
instructions, inlining (only performed irRO3’ option), common subexpression elimination, jump
threading and delayed branch scheduling. The machine-dependent peephole transformations are
activated in all the options. What th@X’ options do in reality are to activate certain flags in the
compiler which specifically affects how the compilation proceeds. The user have direct access to
all of those flags and can explicitly activate each and every one of them when starting a compila-
tion, but usually it is enough for most users to use-thX” options. Only if a specific behaviour

is desired to be encouraged or suppressed, the flags might come in handy. See the GNU CC docu-
mentation for a complete survey of the flags.

2.2.3 Intermediate representation

Most of the work of the compiler is done on an intermediate representation called RTL (Register
Transfer Language). In this language, the instructions to output are described, pretty much one by
one, in an algebraic form that describes what the instruction does. RTL is inspired'istssf

has both an internal form, made up of structures that point at other structures, and a textual form
that is used in the machine description and in printed debugging dumps. The textual form uses
nested parentheses to indicate the pointers in the internal form. Here follows an example from a
.rtl " dump file which hopefully will enlighten the readers. It shows the textual interpretation in

a Lisp fashion, as described.

(insn 11 10 14
(set (mem:QlI (plus:QI (reg:Ql 5)
(const_int -1)))
(reg:QI 1 TMP)) -1 (nil)
(nil))

Example 2 An extract of a RTL dump file when compiling for Thor

In Example 2ve see a very simple example of what an RTL-object might look like. The numbers
following the string insn ’ indicates which place in the intermediate language list this object
occupies (11) and to which objects it is linked to (10 and 14). The next sequence of characters
show the main syntax of the RTL-object. In this case it simply describes moving the contents of
register 1 (TMP) to a memory location. The address of the memory location equals the contents
of register 5 minus 1. In other words one can say that this RTL-object represents a store operation
from a register to a memory location.

The register numbers Example 2are hard registers but normally one should not interpret these
as hard registers but merely as pseudo registers, that in a later stage in the compiler will be
mapped to the processor’s hard registers. The charadtérdsefore the hil ’-lists tell that the
compiler has not tried to match this RTL-object with an instruction defined in the machine
description file. When matching, the compiler might need to transform the RTL-object in order to
suite the defined instructions.

1. Lisp (List Processor) is a functional programming language.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag27

RTL uses five kinds of objects: expressions, integers, wide integers, strings and vectors. Expres-
sions are the most important ones. An RTL expression (“RTX”, for short) is a C structure, but it is
usually referred to with a pointer. In the example above, the wiele sequence is an expres-

sion and therefore an RTX, and in turn it may contain other RTXs ddest_int -1 "in this

case.

Every time a reference to memory or a register occurs in RTL code, one must specify in which
machine mode the operation works. The most common machine modes are word, half-word and
byte mode. In the example above one can see that each reference to a data location, is working in
'Ql’-mode (indicated by the character sequen@®? * after a memor 'reg ’ reference). Ql’

stands for Quarter Integer, which means a quarter of a word (usually 8 bits, but this is not true for
Thor, see 3.3.2, Target control macjo3here are also as! - and an HI’-mode.

2.2.4 Machine Description

A machine description has two parts: one file containing instruction patternsr(thefile) and a

C header file with macro definitions. Thet’-file for a target machine contains a pattern for

each instruction that the target machine supports (or at least each instruction that is worth telling
the compiler about). The header file defines numerous macros that convey information about the
target machine that does not fit into the scheme of ite’*file.

What really happens when building a compiler is that .tinel *-file is interpreted by several pro-
grams. These programs generate C source files, which in turn are compiled and linked with the
rest of the GNU CC source files. Further on, the-macro file is included in the building, and

the macro definitions are replaced in ordinary C preprocessor fashion. The help-functions in the
'.c -file are compiled and linked as an ordinary module. This way of designing a compiler has
several advantages:

* One can make a target independent compiler, which can be placed on several dif-
ferent platforms, compiling to an arbitrary target.

* It is not necessary to change any of the GNU CC source files, since all target
dependent features are solved by the use of macros, and by the instruction pat-
terns in the.md’-file.

2.24.1 The Machine Description file, *.md’-file

This file mainly contains the instruction patterns, which defines the set of standard names the
compiler is allowed to use, and also shows how the assembler instructions are output. An instruc-
tion pattern is either alefine_insn ' or a 'define_expand ’-pattern. In addition to the

instruction patterns, the file also contains patterns for peephole optimization. To get an under-
standing of how things work, one can also take a loékgatre 10 'Example of RTL generation’

There is an important difference betwedafine_expand ’- and 'define_insn ’-patterns.

The 'define_expand ’-expressions are only used in the RTL generations stage, used by the
compiler when trying to convert the parse tree to the intermediate language, therefore one uses
these constructs when a sequencelefihe_insn ’-expressions are the only way of handling

a certain task in an architecture’s instruction set. Their only task consists of showing the compiler
how a specific operation is best represented in the machine. The compiler has access to a set of
standard names which one can use in order to give a hint to the compiler that the machine can

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag28

solve a certain mission directly. These standard names can either bedeffitne ‘expand

or the define_insn '’ variant, where thedefine_expand ' expression just translates the
construct to severatlefine_insn ’ expressions. In therhd -file so called nameless patters

could be found, these are just like the standard-name expressions but the compiler does not have
any prejudices about them, often one use them as collectors for the debris resulting from the rav-
ages of thedefine_expand ’-expressions.

Two very important fields in the templates when generating the RTL code in terms of deciding
which pattern to select, are the predicate and the constraint field. Against those the generated RTL
code is matched to decide which template to select. Moreover, if the predicate accepted the oper-
and, the template is suitable. Next, the constraints are checked, and that field is a list of arbitrary
length containing different cases of data references that should be separated from each other. Each
constraint either directly corresponds to an assembler string, or a C function manipulating a more
complex operand and in turn putting out the assembler code after modifying the memory refer-
ence in a suitable way. If no constraint is matched the compiler tries to reload the failing operand,
i.e. a very complex operand that the patterns cannot handle is computed in steps by generating
several simpler RTLs. The output template field can either contain as many strings as there are
constraints, or a C block that in turn is able to modify and alter the operands before it outputs the
assembler code. The block is able to call C help functions that one can definedriile.’

There exists a third field that can control if the template is the right one to choose. The field can
contain an arbitrary C expression, that must evaluate to true or false. This is called the condition
field and often is it left blank, since one can usually solve the RTL generation problem without it.

2.2.4.1.1 The 'define_insn ' patterns

Each normal instruction pattern contains an incomplete RTL expression, with pieces to be filled in
later, operand constraints that restrict how the pieces can be filled in, and an output pattern or C
code to generate the assembler output, all wrapped umlé&fia€_insn ' expression. A
'define_insn ' is an RTL expression containing four or five operands:

1) An optional name. The presence of a name indicate that this instruction
pattern can perform a certain standard job for the RTL-generation pass of
the compiler. This pass knows certain names and will use the instruction
patterns with those names, if the names are defined in the machine descrip-
tion. The absence of a name is indicated by writing an empty string where
the name should go. Such nameless instruction patterns are never used for
generating RTL code, but they may permit several simpler instructions to
be combined later on. Names that are not thus known and used in RTL-
generation have no effect; they are equivalent to no name at all. Giving a
nameless pattern a name could be a help when studying RTL dumps, since
the name gives a hint what the pattern actually does. The standard conven-
tion, used by most ports, is to give the nameless patterns names starting
with the character” followed by an appropriate name implying what
kind of work the pattern does. A pattern named in this way will still be
treated as a nameless one by the compiler.

2) The “RTL template”. This is a vector of incomplete RTL expressions

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag29

which shows what the instruction should look like. It is incomplete
because it may contaimatch_operand ’,’match_operator ’, and
"match_dup ’ expressions that stand for operands of the instruction. If the
vector has only one element, that element is the template for the instruction
pattern. If the vector has multiple elements, then the instruction pattern is a
'parallel ’-expression containing the elements described.

3) A “condition”. This is a string which contains a C expression that is the
final test to decide whether an instruction body matches this pattern. For a
named pattern, the condition (if present) may not depend on the data in the
instruction being matched, but only on the target-machine-type flags. The
compiler needs to test these conditions during initialization in order to
learn exactly which named instructions are available in a particular run.

4) The “output template”: a string that says how to output matching instruc-
tions as assembler cod&s in this string specifies where to substitute the
value of an operand. When simple substitution is not general enough, a
piece of C code can be specified to compute the output.

5) Optionally, a vector containing the values of attributes for instructions
matching this pattern.

Here is an actual example of an instruction pattern for Thor:

(define_insn "*addqi"
[(set (match_operand:Ql O
"tmp_register_operand" "=r,r,r")
(plus:QIl (match_operand:Ql 1
"tmp_register_operand" "0,0,0")
(match_operand:Ql 2
"simple_operand” "l,m,r")))]
"@
ADDI %2
ADD %z2
ADD %z2"
[(set_attr "type" "arith,arith,arith)])

Example 3 An example of a Thor instruction pattern

This example shows what an add instructiorQi’-mode looks like. Observe the difference

between an instruction pattern and an RTL-object. Here we only specify that some operand O
should store the result from the addition between operand 1 and 2. Nothing is said about the regis-
ter numbers and memory positions. The pattern shown is nameless (the name begins with *’) and
used to match the RTL generated bygefine_expand ’-pattern.

The string tmp_register_operand "is a so called predicate, and in this case (for operand 0)
it forces the operand to be a register (and only TMP-register defined according to Thor’s
machine descriptiorsee 3.3.2, Target control macjpand if not so, the compiler will not be able

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag30

to match this pattern with the generated RTL-object. If the compiler cannot find a suitable pattern
it will crash, and therefore one must make sure that every possible case that can arise from the
RTL generation must have an instruction template. The predicate may be an empty string; then it
means that no test is to be done on the operand, so anything which occurs in this position is
valid.The predicate is usually a pure C function taking two arguments, the machine mode and the
operand, and returning true or false. One can have numerous self-defined predicates, apart from
the standard ones defined by GNU CC, which one usually places in tHée.

The string following the predicate is called a constraint. Eaetch_operand ' in an instruc-

tion pattern can specify a constraint for the type of operands allowed. Constraints can say whether
an operand may be in a register, and which kinds of registers; whether the operand can be a mem-
ory reference, and which kinds of addresses; whether the operand may be an immediate constant,
and which possible values it may have. The constraints should be a subset of its corresponding
predicate, and ought not to allow more possibilities than the predicate. Often the compiler suc-
ceeds in finding an allowed pattern but the RTL-object does not satisfy its constraints, in this case
the compiler tries to transform the program in order to make possible for a certain operand to fulfil

a specific constraint, and this without changing the semantics. This can often be arranged by
inserting load instructions to and from registers together with the failing instruction, i.e. reload-

ing. Constraints can also require two operands to match.

2.2.4.1.2 Expander Definitions

On some target machines, some standard pattern names for RTL generation cannot be handled
with single instructions, but a sequence of RTL instructions can represent them. For these target
machines, adefine_expand ’ pattern can be written to specify how to generate the sequence
of RTL. A 'define_expand 'is an RTL expression that looks almost likedafine_insn 7,

but, unlike the latter, alefine_expand ' is used only for RTL generation and it can produce
more than one RTL instruction. Aéfine_expand ' RTX has four operands:

1) The name. Eachdefine_expand ' must have one of the standard
names, since the only use for it is to refer to it by name.

2) The RTL template. This is just like the RTL template for a
'define_peephole ’inthat it is a vector of RTL expressions each
being one instruction.

3) The condition, a string containing a C expression. This expression is used
to express how the availability of this pattern depends on subclasses of tar-
get machine, selected by command-line options when GNU CC is run.
This is just like the condition of @éfine_insn '’ that has a standard
name. Therefore, the condition (if present) may not depend on the data in
the instruction being matched, but only on the target-machine-type flags.
The compiler needs to test these conditions during initialization in order to
learn exactly which named instructions are available in a particular run.

4) The preparation statements, a string containing zero or more C statements
which are to be executed before RTL code is generated from the RTL tem-
plate. Usually these statements prepare temporary registers for use as inter-
nal operands in the RTL template, but they can also generate RTL

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag31

instructions directly by calling routines such emit_insn ’, etc. Any
such instructions precede the ones that come from the RTL template.

Every RTL instruction emitted by défine_expand ' must match somealefine_insn ' in

the machine description. Otherwise, the compiler will crash when trying to generate code for the
instruction or trying to optimize it. Theléfine_insn ' that will in turn be matched against

must not be a standard-name pattern, its (optional) name will not be checked at all. Here is a
example how it is possible to use this facility:

(define_expand "movqi"
[(set (match_operand:QI 0 "general_operand" ")
(match_operand:Ql 1 "general_operand" "))]

{

if (emit_move_sequence (operands, QImode))
DONE;

)
Example 4 One way to use thedefine_expand ’-feature (from ’thor.md)

The compiler will match thisdefine_expand ’-expression whenever it wants to move a quar-
terword (QI’-mode means a full word in Thor’s machine descriptsee 3.3.2, Target control

macrog from an arbitrary location to another, since the predicate gaperal_operand ’

(register, memory etc.). The last field in the expand-expression contain a C-block, which essen-
tially will execute a functionémit_move_sequence ’ with two arguments, whereper-

ands ' is a array containing all the operands in the RTX-field, and the second argument is a
machine mode. The function will in turn emit a sequence of patterns that will be matched against
"define_insn ’-expressions. A macrdONEis inserted after the function call since we do not
desire that the template itself should be emitted, just the sequence generated by the function.

2.24.1.3 Standard Names

The standard names are a set of predefined names that have a special meaning in the RTL-genera-
tion pass of the compiler. Giving one of these names to an instruction pattern tells the RTL gener-
ation pass that it can use the pattern to accomplish a certain task. Some names are essential, and
must be found in therhd -file, otherwise the compiler will not build. Other names could be left

out and the compiler will find another way to solve its mission. But if one finds a clever machine-
dependent way of accomplishing the task, it would help the compiler to deliver the most opti-

mized code possible.

2.2.4.1.4 Machine-Specific Peephole Optimizers

In addition to instruction patterns thend’-file may contain definitions of machine-specific

peephole optimizations. The combiner does not notice certain peephole optimizations when the
data flow in the program does not suggest that it should try them. For example, sometimes two
consecutive instructions related in purpose can be combined even though the second one does not
appear to use a register computed in the first one. A machine-specific peephole optimizer can
detect such opportunities. A definition looks like this:

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag32

(define_peephole
[INSN-PATTERN-1
INSN-PATTERN-2
o]

"CONDITION"
"TEMPLATE"

"OPTIONAL INSN-ATTRIBUTES")

Example 5 A template of a peephole definition

In this skeleton,INSN-PATTERN-1" and so on are patterns to match consecutive instructions.
The optimization applies to a sequence of instructions WhNSN-PATTERN-1" matches the

first one, INSN-PATTERN-2’ matches the next, and so on. Each of the instructions matched by
a peephole must also matchdafine _insn .

Peepholes are checked only at the last stage just before code generation, and only optionally.
Therefore, any instruction which would match a peephole budefone_insn ' will cause a

crash in code generation in an unoptimized compilation, or at various optimization st4g€s. ’
DITION is a C expression which makes the final decision whether to perform the optimization
(if the expression is nonzero). [EONDITION is omitted (in other words, the string is empty)

then the optimization is applied to every sequence of instructions that matches the patterns.
Applying the optimization means replacing the sequence of instructions with one new instruction.

The TEMPLATEcontrols ultimate output of assembler code for this combined instruction. It
works exactly like the template of define_insn ’. Operand numbers in this template are the
same ones used in matching the original sequence of instructions.

The result of a defined peephole optimizer does not need to match any of the instruction patterns
in the machine description; it does not even have an opportunity to match them. The peephole
optimizer definition itself serves as the instruction pattern to control how the instruction is output.

22415 Instruction attributes

In addition to describing the instruction supported by the target machinenthefile also

defines a group of “attributes” and a set of values for each. Every generated instruction is assigned
a value for each attribute. Theefine_attr "-expression is used to define each attribute

required by the target machine. It looks like:

(define_attr NAME LIST-OF-VALUES DEFAULT)

Example 6 How an attribute is defined

"NAME:is a string specifying the name of the attribute being defihé8T-OF-VALUES ' is

either a string that specifies a comma-separated list of the values that can be assigned to this
attribute, or a null string to indicate that the attribute takes numeric valESAULT is an

attribute expression that gives the value of this attribute for instructions that match patterns whose
definition does not include an explicit value for this attribute.

2.2.4.1.6 Delay slot attributes
The instruction attribute mechanism can be used to specify the requirements for delay slots, if

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag33

any, on a target machine. An instruction is said to require a delay slot if some instructions that are
physically after the instruction are executed as if they were located before it. Classic examples are
branch and call instructions, which often execute the following instruction before the branch or
call is performed. On some machines, conditional branch instructions can optionally annul
instructions in the delay slot. This means that the instruction will not be executed for certain
branch outcomes. Delay slot scheduling differs from instruction scheduling in that determining
whether or not an instruction needs a delay slot, is dependent only on the type of instruction being
generated, not on data flow between the instructions.

The requirement of an instruction needing one or more delay slots is indicated via the
'define_delay ’-expression. It has the following form:

(define_delay TEST
[DELAY-1 ANNUL-TRUE-1 ANNUL-FALSE-1
DELAY-2 ANNUL-TRUE-2 ANNUL-FALSE-2

B

Example 7 Template of adefine_delay ’-attribute

"TEST is an attribute test that indicates whether thefine_delay ' applies to a particular
instruction. If so, the number of required delay slots is determined by the length of the vector
specified as the second argument. An instruction placed in delay slot N must satisfy attribute test
"DELAY-N. "ANNUL-TRUE-N is an attribute test that specifies which instructions may be
annulled if the branch is true. SimilarBARNUL-FALSE-N specifies which instructions in the

delay slot may be annulled if the branch is false. If annulling is not supported for that delay slot,
"(nil) ’should be coded.

2.2.4.2 Target Description Macros, ".h ’-file

In addition to the.md-file, a machine description includes a C header file conventionally given
the name.h ’-file. This header file defines numerous macros that convey the information about
the target machine that does not fit into the scheme ofrtitE-file. Typical things are; various
commands to control the compilation and assembling type and storage layout, i.e. how data
should be aligned, what kind of registers the processor controls and how to use them, addressing
modes, i.e. what sort of addresses are legal and in turn could be handled by the machine, what
happens with the stack at various situations and how to master it.

Depending on which macro we are concerned about, the layout can be totally different, and often
Is it necessary to study the GNU CC documentation very carefully and sometimes even look in
the source files in order to completely understand how the macro should be designed and used.

Since they are macros, any type control vanishes if the macro takes any arguments, and therefore
extra concern should be taken when using the macros as functions (as always). And one ought not
to forget that since macros means textual replacement, the precedence between operators and var-
iables might be different compared to the C language, and extra care should be taken in this matter
too.

GNU CC source files use the numerous macros defined irhthéle. This way one is able to
build several compilers for different machines, without changing the source files. One drawback

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag34

is that the source files may be a little hard to read, but there is maybe no other way to solve this
problem. No example of any macros will be given here because, as explained, they would be too
machine specific since they concern register sets, addressing modes etc. A example would there-
fore require immense amount of explanation about this particular machine. See documentation of
the GNU CC, for full coverage of all macros and what they stand for, andhth@élé for Thor to

see how we defined them.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag35

3 GNU C Compiler for the Thor microprocessor

In this chapter we focus on our port of the GNU C compiler to the Thor microprocessor. It will
mainly be a description of the resulting compiler, but we begin with our problems and our strat-
egy. We will also try to estimate how well we succeeded in porting the GNU C compiler.

3.1 Problems

There are several things which must be done when porting the GNU CC:

» The Thor processor is not a known target for the designers of the GNU CC, and
therefore we must make it possible to install and configure a compiler for yet
another target.

» Since Thor does not have an operating system, and is strictly intended for
embedded systems, one cannot install GNU CC on a computer system equipped
with Thor. Therefore, one is forced to install the GNU CC as a cross-compiler
working on a host (in our case a Sun Sparc 20 workstation), delivering code for
Thor. Subtle problems can arise when making a cross-compiler if, for example,
the host and the target do not have identical floating-point formats.

» There is no way to make GNU CC directly deliver hex-code for Thor, so we
must use a separate assembler that assembles the textual output from the com-
piler. The output must be in the form of assembler instructions using the mne-
monics listed in the appendix. Furthermore we must configure the compiler to
utilize the Thor assembler instead of the usual unix asseralSlerThe code
GNU CC delivers must then suit the assembler so that no illegal constructs are
generated, which are not tolerated by the assembler. This also includes the hard-
ware constraints that arise, for example when pushing a number too large to fit in
an immediate instruction, the number must be put in a data word in memory and
then pushed via a symbolic reference.

The problems above are quite ordinary ones and everyone who tries porting the GNU CC as a
cross-compiler will meet them. But we soon encountered other problems, which are a bit more
tricky:

* In the definition of the GNU CC'’s goals, one can read that the compiler is
designed for 32-bit machines that have several general registers. Thor is indeed a
32-bit machine but is fails on the register claim, since Thor does not contain any
registers except specialized registers dedicated to special tasks, such as the top-
of-stack pointer and program counter.

* GNU CC is also designed for 8-bit addressable machines. Thor can only address
words, not bytes. Therefore, to support byte addresses one would have to gener-
ate extra code that extracts (or inserts) bytes from a word. All this makes it diffi-
cult to support the natural semantics of every data type found in the C language,
in the meaning that characters occupy 8 bits and static strings can be packed so
one word contains 4 characters. It is a hard problem to make the compiler under-
stand this, since it takes for granted that one can address bytes.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag36

» Not included in the C language is the hardware Ada support found in Thor,
which is implemented as special task instructions in the instruction set. There-
fore it is very hard to make use of these instructions. An advanced solution is to
design a set of library functions utilizing the Ada instructions.

» Usually when designing a compiler, one assigns certain registers to keep track of
special things when executing the compiled program, such as a frame pointer, a
top-of-stack pointer, a register to hold the return value when returning from
functions etc. The most urgent problem seemed to be the frame pointer. Thor
only has a top-of-stack pointer, no frame pointer. We must force the compiler to
eliminate the frame pointer and to only use the top-of-stack pointer. However,
according to the GNU CC documentation one can only tell the compiler to make
a try to eliminate the frame pointer. There is no guarantee that it will succeed. If
it fails, the assembler will get incorrect input and also fail, or deliver incorrect
object files.

» The intermediate representation consists of RTL instructions where each instruc-
tion ideally matches one machine instruction. The RTL instructions are quite
flexible, and one has many options when designing the intermediate language.
Thor has the rather uniqueSH and 'POP machine instructions, which need
some kind of special representation in the intermediate language. None of the
previous ports have had this problem and we did not know whether GNU CC
could handle it or not.

« To fully support all different extensions of the C language supported by the GNU
CC, like nested functions, and to support other front ends, like the C++ lan-
guage, one would need to implement several tricky features. These features are
normally implemented when one does a port of the GNU CC, but as our main
goal is to support the ANSI C language without any special extensions we can
skip them if they prove to be too difficult. If they are easy to implement we
should include them. For example, one might need a more complex stack frame
(see 3.3.1.2, Function calling interfgosith a static and dynamic chain, and
trampolines to handle addresses to local functions.

3.2 Strategy

Of all the problems mentioned above, the problems with the lack of registe®BStHand

"POP representation and the frame pointer were the most troublesome ones. The task instructions
were not something we had to support, so we could forget them, and leave the matter for future
work. The 8-bit pointer problem was also avoided in a sense, by letting the character type occupy
a whole word of 32 bits. To simplify things, we also skipped the GNU CC'’s extensions to the C
language. These extensions could be added later on and we could concentrate on designing a
working ANSI C compiler.

We will now take a closer look at the main problems and their solution.

1. A piece of code created at run-time.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag37

3.2.1 The lack of registers in Thor

When RTL is generated, the compiler uses pseudo registers whenever it needs some kind of stor-
age. A pseudo register is never reused, so in big functions they are numerous. In later passes, the
compiler tries to allocate the pseudo registers to the available hard registers (local and global allo-
cation,see 2.2.1.13 and 2.2.1)1©Dften, the hard registers will be too few and some pseudo reg-
isters will be left unallocated. These unallocated pseudo registers will be put in stack slots (the
reload passsee 2.2.1.16

In our case we do not have any hard registers to allocate. But we still must find a way to please the
compiler. Our first thought, in the very beginning, was to use the pass dealing with the Intel 387
numerical coprocessor in some way. The 387 pass seemed to do exactly what we were supposed
to do, to convert registers into stack registers. After studying the source code we soon gave up.
The 387 pass is too specialized, we think, to be easy to change for our needs. Thor’s stack works
in a different way compared to the 387 stack. The source code would need to be rewritten in many
ways, and it would probably be better to write a completely new pass for the compiler.

One of our design principles has been to try to make things work without changing the GNU CC
source code, and without introducing any new passes in the compiler. With this in mind we dis-
carded the 387 solution.

The fundamental principle is that it is always possible to pretend that Thor has a lot of registers,
and then later on, when the assembler instructions are output, change these registers into stack
slots. For example, if we tell the compiler that we have 4 hard registers, we can allocate 4 extra
stack slots in th&unction prologugsee 3.3.2.8, Assembler forinahd then change all references

to these 4 registers into stack slot references (stack relative addresses). The only question is, how
many hard registers should we choose? We have studied three different cases; no registers, one
register or many registers.

With a lot of registersthe compiler will always succeed. There will always be enough hard regis-
ters when allocating the pseudo registers. But still, how many is a lot? Ideally, we would tell the
compiler to use just as many hard registers as it needs. But this is impossible since the number of
registers must be set in advance when building the compiler and cannot be changed dynamically.
The alternative is to choose a very large number of registers. But then we would waste stack slots
and the compiler might choose not to do it's best when allocating small functions. A good com-
promise might be to examine some typical C functions (is there any typical C function?) and find
out the maximum number of registers needed and then choose this number.

A more simple solution (and closer to the truth) is to pretend that Thaohesd registerst all.

The compiler would then have to put all the pseudo registers into stack slots and this would make
the output of the assembler instructions simpler, because no register references would exist, only
stack relative memory references. This solution is simple but it is also a bit stupid, because the
compiler does not try any optimizations when reloading pseudo registers into stack slots. This
means that if we have 100 pseudo registers they will be reloaded into 100 stack slots even if, for
example, 20 hard registers would have sufficed when using a more clever allocation algorithm.

The solution with no hard registers is also a bit risky. In the reload pass, the compiler tries to
match the operands with the constrains given in the machine description. If it fails, it will reload

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag38

the failing operand via a hard register. In these cases, there must be a hard register available, oth-
erwise the compiler will crash. When writing the machine description we have tried to design the
constrains so that they always match. Still, if a match fails and no hard registers are available, the
compiler will crash.

The solution we have chosen, is to nse hard registelWe tell the compiler that we have one
hard register called th& OP-register and then change all references to this register into a stack
relative memory reference. We also allocate one extra stack slot in the function prologue.

With one hard register we get a more secure solution than with no registers at all and we can han-
dle one reload of an operand via a hard register. The compiler will also be able to use this register
when allocating the pseudo registers and will tend to use this register quite frequently. The fre-
guent use makes the peephole optimizatsee 3.3.5.1, Machine-specific peephole optimiza-

tions) more successful in removing unnecessary push/pop sequences with temporary values.

Our first thought was that th&@ OP-register would in some way correspond to Thor’s internal

TOP register. This is true in the sense that Tl@@P-register sometimes resides at the top of the
stack, but as our solution gradually evolved, it lost this tight connection with the internal TOP reg-
ister, and is now almost like any other stack slot. The solution still has the advantages of being
more secure and the code generated is easier to optimize.

3.2.2 Frame pointer elimination

A frame pointer is used to point out the location in the stack where one can find the parameters
passed to a function and the allocated stack slots for local variables. It is a hard register (dedicated
or general) which is initialized in the function prologue and used whenever access is needed to the
frame. Some microprocessors can use this register as a general register, therefore it is desirable to
eliminate the frame pointer whenever it is possible. If the top-of-stack pointer does not change
inside an executing function, the offset between the frame pointer and the top-of-stack pointer

will remain constant. In this case it is possible to change all references to the frame pointer into
references to the top-of-stack pointer (with an added offset) and the frame pointer can be elimi-
nated.

The Thor microprocessor does not have any frame pointer. So in our case it is not only desirable
to eliminate the frame pointer, it is essential that it is successfully eliminated. Our strategy in this
case is very simple. We tell the compiler to try to eliminate the frame pointer and we also make
sure that it never fails by not using any kind of dynamic stack allocation. If the elimination fails it
will crash.

Are there any disadvantages with this strategy? Well, dynamic allocation from the stack is forbid-
den. Therefore we can not permit the C functalfota ’, which is common in UNIX systems.

This function allocates memory from the stack (frame) of the calling function. The allocated
memory is freed automatically when the called function ends. Moreover, we are not sure whether
or not the compiler by itself can generate code to dynamically allocate memory from the stack.
Our strategy has proven to be a working one but it might also be a bit risky.

3.2.3 The 8-bit addressing problem

The GNU C Compiler has been designed for machines with an 8-bit addressable memory and

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag39

with a word size of 32 bits, or at least, for machines that have instructions dealing with bytes (8
bits). This means that the normal data types in C, like the character type, can quite easily be
defined to have their normal sizes. For example, the character type can be defined as 8 bits and the
integer type as 32 bits, as we are used to, without any special consideration.

The Thor microprocessor can only address 32-bit units (the word size). This causes no problem
when defining a suitable size of the integer type, but for the character type the size choice is not so
obvious. If we choose a character size of 32 bits, we get a simple solution where no special
instructions are needed to handle the characters and where characters will be fast to work with.
On the other hand, if we choose 8-bit characters, we will save memory by packing 4 characters
into every word. In order to work with these characters we must output special instructions to
extract or insert 8-bit parts of a word. This would make the 8-bit solution slower. In addition, the
compiler would not offer any help because it has no support for a 32-bit addressable memory.

In the C language it is not possible to have different pointer units. For example, we cannot make
pointers to characters contain byte addresses, and pointers to integers contain word addresses. We
must have pointers that contain either byte or word addresses, not both kinds. This is due to the
fact that pointers can be assigned to each other, and we have no strict type checking in C. The
issue with different pointers in C has been widely discussed: take a look, for example, in the
usenet newsgrougpmp.compilersr gnu.gcc.help

To sum up, we find that if we want an 8-bit character type, we must have pointers containing byte
addresses. This influences all types, and for all pointers to objects aligned to word boundaries, we
must dereference the pointer, i.e. divide it by 4 to get a word address from the original byte
address. In all cases of pointer usage we must add extra code to handle the conversion of byte to
word addresses.

After considering all the advantages and disadvantages with the 8-bit pointer solution we judged
that the 8-bit solution was too cumbersome. The solution with 32-bit pointers would be much eas-
ler to implement and would result in faster code. The memory wasted, when using large character
arrays, was not of major concern and could be handled on the user level. With 32 bits as the small-
est size, it was natural to define the size of all the different types to be 32 bits. In this way, the
compiler’s internal QI’-mode would represent one word, and the only patterns we would need to
write in the machine description would be ti# mode patterns (plus th@F-mode patterns to

handle the float and double types).

To show how the memory waste could be overcome we present this small example. It is always
possible to define a bit structure in C, as follows:

struct packed_char

{
int charO : 8;
int charl : 8;
int char2 : 8;
int char3 : 8;
3

Example 8 A bit structure

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag40

There will be no problem with declaring an array built up by theaeked_char ’ structures,

but to be able to work with strings of this kind, one needs new string handling functions. Anyway,
all this shows that even if the compiler does not support 8-bit characters one can still solve the
memory waste problem, when it is necessary. There is no doubt though, that it would be more
user friendly to make the compiler support it directly.

Our decision to let pointers contain word addresses also has further implications. A special case is
the PC register in Thor, which contains half-word addresses (16 bits). This means that all pointers
to functions need special treatment. A pointer to a function contains a word address and has to be
multiplied by 2 to get a half-word address (which can be used, for example, in an indirect call).
This causes no problem, but consider the case when one needs the address of a function. The
address has to be divided by 2 to fit in the word pointer and we will lose one bit of information.
The result is that functions must never lie on an odd address, they must always be aligned to a 32-
bit word boundary.

Apart from the PC register problem, there is also some internal design issues. The assembler
interpret all offsets (and all addresses) as byte offsets. Therefore one must not forget to translate
the compiler’s word offsets into byte offsets (multiply with 4).

3.24 The representation of 'PSH and 'POP

When designing the machine description, one has to make many strategic decisions. One of them
Is which kind and how many machine patterns to define inrnie’-file. The idea behind the pat-

terns is to have named patterrdefine_insn ’ or 'define_expand ’) that emit one or sev-

eral RTL instructions, where each instruction represents a machine instruction, and then have
patterns (onlydefine_insn ’) to translate these into assembler output. But this is only an idea.
There are other possible designs.

The most extreme design (which deviates most from the basic idea) would be to let all the stand-
ard names correspond to one RTL instruction and in the end output a sequence of assembler
instruction for each RTL instruction. There would be no neediigfirie_expand ’-expres-

sions and the compiler would never fail in any way when working with the RTL instructions. This
design would have fit quite well, but it has some drawbacks. When the RTL instructions corre-
spond to several machine instructions, it is impossible to do any delay slot filling. It is also diffi-
cult to do peephole optimization because there would be too many combinations to cover.

movii —» [seieinen | stan) s [aneis |—> pSHD
POP a
ot — [seme >0 > [meren | pone

ADD e
POP c

Figure 4 The extreme design

The next step towards the basic idea would be to begin precisely as in the previous design, and

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag41l

then usedefine_split -definitions' to split the RTL instructions. Each new RTL instruction
would then represent one machine instruction. However, the compiler only tries to split RTL
instruction when doing delay slot filling, and it only tries to sg@ineinstructions, not all of

them. So, we would maybe get a working delay slot filling, but it would still be difficult to do
peephole optimizations. There might be a way of solving this though, and make the compiler to
try to split all instructions before doing any delay slot filling and peephole optimization. But we
have not done enough research in this area, so we do not know if this might be a promising
design.

Eventually, we came to the conclusion that it would be best to try to follow the basic idea. When
the RTL was generated, one should try to make each RTL instruction correspond to one machine
instruction. We found that some machine instructions were quite easy to express in the RTL
expressions. For example, if the compiler wants to @dmlddi ’, we emit three instructions: one

to push the first operand on the stack, one to add the other operand and finally one to pop the
result back into the destination operand. Tdad” instruction was straightforward to implement.

The big problem, however, was how to express Th&%H and 'POP instructions in the RTL
expressions.

The problem with thePSH and 'POP instructions was going to be a tricky one. The first thing
we tried, was to follow the rules and the semantics of the RTL expressions, by the book. We found
these mathematically correct representations forR&1'and 'POP instructions:

PSH (set (mem:Ql (pre_dec:Ql (reg:Ql 2 TOS)))
source_operand)

POP (set destination_operand
(mem:QI (post_inc:Ql (reg:Ql 2 TOS))))

Figure 5 Our first try

This representation of th®SH instruction is identical to the way the compiler represents the
normal push instructions (those occurring before a cplg. 'dec ' means to decrement the top-
of-stack pointer before storing the source opergmmbt’ inc ’ means to increment the top-of-

stack pointer after loading the destination operand. The representation shown above corresponds
to the actual actions performed inside the Thor microprocessor.

With the help of thepre_dec ' and the post_inc ' one can describe th®SH and 'POP

instructions in a neat way. GNU CC understands these instructions, but the sad thing is that it does
not try any optimization on them. When it seepr@’dec ' or a '‘post_inc ', it treats the

instruction as having a side effect and then abandons most attempts to optimize it. The

'pre_dec "and ‘post_inc '’ directives tell the compiler that the instructions will be too com-

plex to be worth bothering about. The reason for this is quite simple. No other port of the GNU
CC have usedpre_dec 'and 'post_inc ’in this way. The pre_dec ’ instructions (normal

push instruction) never need any optimization, andghst’ inc '’ directive is inserted by the

1. 'define_split "-definitions are another way of implementing the handling of the instructions, apart
from 'define_expand ’- and 'define_insn ’-definitions.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag42

combine phase, when a great deal of the optimization is already done.

The ‘pre_dec '/’ post_inc '’ solution was not a good one. We could just as well have used the
extreme design, explained above, with a better result. We had to find some other way of represent-
ing the PSH and 'POP instructions, a way that let the compiler work with and optimize the RTL
instructions.

The winning solution was to invent a new meaning for some RTL expressions. We introduced a
new register called th@ MP-register. The PSH instruction could now be represented by a store
operation to theTMP-register, and thePOP instruction by a load operation from thEVIP-reg-

ister. The TMP-register would act as a temporary top-of-stack value and it was only allowed to
be used by oudefine_expand ' patterns. The compiler is not supposed to use it when allocat-
ing pseudo registers.

PSH (set (reg:Ql 1 TMP) source_operand)

POP (set destination_operand (reg:Ql 1 TMP))
(clobber (reg:QI 1 TMP))

Figure 6 The final design

One problem with this scheme was that the compiler, according to the semantics of the RTL,
believed that theTMP-register still contained a value after tHOP instruction. Therefore, we
had to add aclobber '1instruction at the end, to indicate that thiéP-register was destroyed

in the process of doing a pop. At first, we tried to emit ¢labber ' within a parallel expres-
sion together with thesét ’ instruction. This would have been the most correct way of express-
ing it, we thought, but it did not work. The compiler still used TdP-register after the clobber
had destroyed it (a bug somewhere). So, we just emittedltidéer ° instruction as a separate
instruction at the end, and that seems to work fine.

There is an ever-threatening danger with our solution. We have done a small change in the seman-
tics of the RTL and the compiler’s optimization passes interpret the instructions using the original
meaning. The compiler might do something we consider illegal according to our semantics. For
example, the compiler might remove an unneces$4Dy’instruction without understanding

that the PSH instruction must be removed as well. If both are not removed, we will get an erro-
neous program, which corrupts the stack when it executes.

To this day, we have manage to avoid all problems caused by the changed semantics, but it has
made our work a little more restrictive and we have not been able to implement some things in the
best possible waysée 3.3.3.6, Condition code setting instructjoBsit we feel that we now have

a strategy that works.

3.3 Solution

We will now take a closer look on our solution and describe the different parts. The main parts are
the ".h ’-file and the !md’-file, but some other auxiliary files may also need a little explanation.

1. A’clobber 'expression takes aregister as a operand and by this it informs the compiler that the register’s
value is destroyed at this point.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag43

The *.h ’-file is mostly described in the secti@r3.2 'Target control macrosThe “md’-file in

the section8.3.3 'Machine description instruction pattern8:3.4 ’Attributesand3.3.5 'Opti-

mizing the codeThe first section below presents some basic definitions, and can also be interest-
ing for a user of the compiler.

3.3.1 Specification of system dependent definitions

In the following sections one finds basic definitions describing the data types and function calling
interface. These definitions are fundamental for the way the compiler works and are also neces-
sary to be aware of when using the compiler.

3.3.11 The basic C data types

The standard data types used by the GNU CC for Thor is not the ones that one might be used to,
due to previously explained reasons. The table below lists the supported data types.

Table 4 The basic C data types known by the GNU CC for Thor.

Type Size in bits Comment
"char ’ 32 Signed by default
short 32
‘int 32
long ’ 32
"long long int ’ 32 GCC extension.
'float 32
"double ’ 32
long double 32

As you can see, all data types have a size of 32 bits, Thor’s word size. This is so because it made
it easier to port GNU CC. To support 64 bit data types, one would need to write several help func-
tions to cover all the different operators, and maybe some new patterns in the machine descrip-
tion. To make the size of the character type smaller, one would need to change the machine
description quite a losge 3.2.3, The 8-bit addressing probjem

3.3.1.2 Function calling interface

The function calling interface has been designed to be as simple as possible. It must explain how
the parameters of a function are passed and how a return value is returned.

The caller is responsible for pushing all the parameters on the stack before the call. It may also
push an optional structure return address and finally the normal return address. The callee (the
called function) is responsible for allocating stack space for it’s local variables, for returning a
return value (when appropriate), and finally for cleaning up the stack and return. When calling a
function with a variable number of parameters, the caller will clean up the pushed parameters

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag44

instead of the callee. It is very important that every function is properly aligned to a 32-bit word
boundary. Otherwise, it will not be possible to store the address of the function in a C pointer.

3.3.1.21 The normal case

The normal case is when we are not returning any structure value and not passing a variable
number of parameterBigure 7shows the stack in the normal case, just after executing the call
instruction and before entering the called function.

Function prototype: int fun (int a, char b, float c);

caller’'s
stack
frame

caller’s local vars.

caller’'s TOP-register

a

stack grows downwards

v

TOS —» return address

Figure 7 View of the stack in the normal case

The parameters are pushed onto the stack in backwards order, beginning with the last one and
ending with the first one. The return value should be placed in the call®/sregister. If it is
not needed, one does not need to do anything.

The caller will not remove the pushed parameters afterwards. It is the callee’s responsibility to
clean the stack before returning. After the return, the top-of-stack pointer should point to the
caller’s TOP-register, where the return value resides. A warning might be needed here, because
it is possible to call functions with the wrong number of parameters, if not a proper prototype is
defined. If such a call is made, the callee will clean up the wrong number of parameters and the
stack will be corrupted (but anyway, it is an error to write such a program).

Example Sshows a typical calling sequence and a typical called function when doing a normal
call.

3.3.1.2.2 Structure value return

When returning a structure value (not a pointer to a structure) the size of the returned object can
exceed 32 bits and not fit in one word. Therefore, we have chosen to let the compiler return all
aggregate types in memory and not in fh@P-register.Figure 8shows the stack when returning

a structure value, just after executing the call instruction and before entering the called function.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag45

Calling function Called function
fun (999, 'A’, 3.14); int fun (int a, char b, float c)
{
int d,e;

return 2;

PSH LCO }

PSHI 65

PSHI 999

CALL fun DATAO ;align function

NOP _fun:

NOP MTOS -3 ;reserve space on stack
PSHI 2
POP 1 ;return value -> TOP
RET 3 :return address now at off. 3
POP 7 ;copy TOP to caller's TOP reg
MTOS 6 ;clean up local + param.

Example 9 Calling sequence when doing a normal call

Function prototype: struct small fun2 (int a);

caller’s local vars caller's

’ stack

frame

struct small ‘
caller’s TOP-register
a
address of 'struct small’
TOS —» return address ek grows downwards

Figure 8 View of the stack in the structure value return case

When the return value is a structure, regardless of its size, the caller reserves space for a structure
to hold the return value and passes a pointer to this structure to the called function. The pointer is
pushed at the end, when all other parameters have been pushed, as a parameter that is invisible to
the user. The callee must then copy the return value (the contents of the structure to return) to the
appropriate place in memory before returning. In addition, the address of the structure (the first
parameter) should be returned in the normal way by placing it in the call@®fsregister.

Example 1Ghows a calling sequence and a typical called function when returning a structure
value (the called function is only an example, not a real generated function)

Document No: TOR/TNT/0028/SE

Date:4 December 1995 Issuel

Pag46

Calling function

struct small { int item; };

Called function

struct small fun2 (int a)

{

)] struct small t;
void main ()

{ titem = 3;
struct small s; return t;

s = fun2 (999); 4

}

DATAO ;align function
_fun2:

MTOS -2 ;t, TOP

MTOS -2 s, TOP PSHI 3

PSHR TOS :calc. address POP 2 ;store 3 into t.item

ADDI 1 of s PSH 3 ;address of s

POP 1 MTOS 1

PSHI 999 ;the parameter PSH 1 it

PSH 1 ;address of s POPX 0 ;copy ttos

CALL _fun2 PSH 3 ;address of s

NOP POP 1 ;TOP

NOP RET 2 ;return address now at off. 2
POP 4 ;copy TOP to caller's TOP reg
MTOS 3 ;clean up local + param.

Example 10 Calling sequence when returning a structure value

3.3.1.2.3 A variable number of parameters

This case resembles the normal one apart from the fact that the called function does not know the
exact number of parameters that have been passed. To handle this situation the called function
acts as if there were no parameters at all, and the calling function has to clean up the stack after-
wards.Figure 9shows the stack when a variable number of parameters are passed, just after exe-
cuting the call instruction and before entering the called function.

The caller first pushes all parameters in the normal way and then make the call. The called func-
tion runs just as an ordinary function would do, but when returning it does not copy the return
value to the caller'sTOP-register. Instead, it puts it one stack slot above the return address. This

IS not so strange, because the called function acts as if there were no parameters at all, and quite
correctly believes that the caller8OP-register resides adjacent to the return address. As a con-
sequence, the called function only cleans up it's local variables and the return address and leaves
the return value on the stack top.

After the call, the caller must restore the stack to its original state. This means that the return value
at the top of the stack must be popped to Ti@@P-register and the pushed parameters must be
removed Example 1khows a typical calling sequence and a typical called function when passing

a variable number of arguments.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag47
Function prototype: int fun3 (int a, ...);
caller’s local vars. caller’s
stack
) frame
caller’s TOP-register
arbitrary # of
parameters
stack grows downwards
¢ The return value
¢ a is placed here.
TOS —» return address
Figure 9 View of the stack when passing a variable number of parameters
Calling function Called function
void main () int fun3 (intn, ...)
{ {
int a; return 3;
}
a="fun3 (2, 'A", 'B");
J DATAO ;align function
_fun3:
MTOS-1 ;TOP
PSHI 66 ;push parameters PSHI 3
PSHI 65 POP 1 :store 3 into TOP
PSHI 2 RET 1 return address at off. 1
CALL _fun3 POP 2 ;copy TOP onto n
NOP MTOS 1 ;clean up return address
NOP
POP 3 ;copy value at
;top to TOP-reg
MTOS 2 ;remove rest of
;parameters
Example 11 Calling sequence when passing a variable number of parameters
In the C language, a variable number of parameters is indicated by the ellipsis "...". It is necessary

that both the caller and the callee are aware of the type of the function, since each part must
behave differently. There must be a proper function prototype corresponding to the actual func-
tion definition, which includes the ellipsis "...". Normally, when using a variable number of
parameters, the first parameter contains some kind of information about the total count of param-

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag48

eters. All parameters are pushed backwards, so this first parameter will always have a fixed offset
from the stack top. If the parameters had been pushed in the other direction, it would have been
very difficult to handle a variable number of parameters.

3.3.1.2.4 Structure value return and a variable number of parameters

When returning a structure value and at the same time passing a variable number of parameters,
we have a case that is simply a combination of the two last cases. The caller pushes one extra
parameter on the stack, the address of the return structure. The called function fills this structure
and then returns. The caller then removes all the parameters plus the extra stack slot for the
address. There is usually no need to move the return value from the top of the stack@#the ’
register, since the return value is simply the address pointing to the return structure and is of no
use to the caller.

3.3.2 Target control macros

The following subchapters will give an description of how dar-file layout finally turned out.

While reading the sections we suggest that you keep a finger in the appendix where a complete
listing of the 'h ’-file is found Gee APPENDIX A -, Listing of machine dependen) filesrder

to simplify searching among the macros we have grouped macros controlling similar things into
sections separated by generous comment lines. In these sections we have tried to put emphasis on
thoroughly explaining solutions vital for the functionality of the compiler. Macros that we believe

to be self-explained, or not essential for understanding of the port, have been left out or described
very briefly.

3.3.2.1 Thor-specific macros

Every time we have detected a bug in GNU CC or for other reasons have felt compelled to make
a patch in the source files, we have invented a new macro to control the activation of the altera-
tion. The standard convention we have used is that each of these macro names stadORth ’
concatenated with another string. For more information concerning the source alterations them-
selves, see sectid3.6 'Changes in the source files of GNU CC’

3.3.2.2 Link sections

An object file is divided into sections containing different types of data. In the most common case,
there are three sections: tieat sectionwhich holds instructions and read-only data;dat& sec-

tion, which holds initialized writable data; and th&s sectiopwhich holds uninitialized data.

Some systems have other kinds of sections. The compiler must tell the assembler/linker when to
switch sections. For this reason there are macros designed to control the section switching com-
mands to the assembler.

In the Thor assembler/linker we only have, in principle, two different sections, one where code is
placed and one where data is placed. The matExsT_SECTION_ASM_ORnd
'DATA_SECTION_ASM_ORre the macros used to control the assembler output when switch-
ing segments. Those macros define the suitable strings to output to the assembler file when the
compiler calls them.

An embedded computer system is equipped with various kinds of memory, such as ROM and
RAM?L. We must protect the initialized data from being destroyed when restarting the system. A

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag49

good compromise is therefore to make the system copy the entire data segment in ROM (contain-
ing both initialized and uninitialized data) to a new fresh data segment in RAM when starting the
system. In this case one can restart the system without any loss of initialized data.

3.3.2.3 Type and Storage layout

Here we define macros that control endianness, addressable units, alignments of data and object
files, roundings, various type sizes and the floating-point format. For Thor we have chosen to treat
the sizes of all types as being equal to the least addressable unit which is see@@@ (Strat-

egy). Most macros encountered with these issues are very simple to understand, since they all
look like a macro followed with a number telling the size of it, lkeefine POINTER_SIZE

32’, which obviously defines the pointer size.

3.3.24 Registers and Register Classes

This section explains how we describe what registers the target machine has, and how (in general)
they can be used. The description of which registers a specific instruction can use is done with
register classes. The numbering of the pseudo-registers, used in the intermediate language, begins
with the register number following the last of the hardware registers, and must be defined by the
macro FIRST_PSEUDO_REGISTER

According to our strategysée 3.2, Strategyve planned to let GNU CC only have one single reg-
ister to use when allocating (thEOP-register). However, that is not the whole truth, since we in
fact allow yet another register, which is only useddefine_expand ’-patterns gee 2.2.4.1,

The Machine Description file, ".md’-fllewhen the generated patterns exchange data with each
other. This register (calledMP, which is a temporary top-of-stack) should not be freely
accessed by GNU CC. A store into this register represeRtSHinstruction, a load from this
register is aPOP-instruction. The two remaining register afi€0S (top-of-stack) andFP’

(frame pointer), both fixed. The macilXED_REGISTERS defines a set withl” or '0’,

where 1’ indicates that a register is fixed, i.e. not for arbitrary use. The position in the set tells
which register the definition controls.

"CALL_USED_REGISTERSs a macro which defines a set of values whicl i$0r registers

not available across function calls. These must includeFiX&ED _REGISTERS and also any

registers that can be used without being saved.This macro therefore identifies the registers that are
not available for general allocation of values that must live across function calls. Consequently,

on Thor all four registers are set i0s.

"HARD_REGNO_NREGS (REGNO, MODHE a C expression for the number of consecutive

hard registers, starting at register numBEGNQ required to hold a value of mod&lODE On

Thor all registers hold the size of a word, and since all operations occur in 32 bits an adequate def-
inition is equal to1'.

"HARD_REGNO_MODE_OK (REGNO, MODig)a C expression that is nonzero if it is permis-

sible to store a value of mod€lODEiIn hard register numbeREGNQ(or in several registers

starting with that one). On Thor we can only say it is okay when the mode is eit@gmaide’

or 'QFmodeé. Thus no discrimination occurs between floating-point and integer data.

1. ROM stands for Read Only Memory and RAM stands for Random Access Memory

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag50

"MODES_TIEABLE_P (MODE1, MODEZ2] is a C expression that is nonzero if it is desirable to
choose register allocation to avoid move instructions between a value of MO&&="1and a

value of modeMODE2 Value is 1’ if it is a good idea to tie two pseudo registers when one has
mode MODEZ1and the other has mod®IODE2 Therefore this macro is tied directly tb’’on

Thor.

On many machines, the numbered registers are not all equivalent. For example, certain registers
may not be allowed for indexed addressing; certain registers may not be allowed in some instruc-
tions. These machine restrictions are described to the compilerregistgr classesyou define

a number of register classes, giving each one a name and saying which of the registers that belong
to it. You can then specify register classes that are allowed as operands to particular instruction
patterns. This feature is not controlled by a macro but an C enumeration type called

'reg_class . Several other macros in turn use this type when defining which registers are
allowed as base pointers etc. Essentially we have three different classes, d0dfarie for

"TMP and one for the union between those two.

"REG_CLASS FROM_LETTER (CHARIs a C expression which defines the machine-depend-
ent operand constraint letters for register classe€HARIs such a letter, the value should be

the register class corresponding to it. Otherwise, the value sholDb®S In Thor we

have defined one such letter, namely Which corresponds to th& OP-register.

Normally the compiler avoids choosing registers that have been explicitly mentioned in the RTL
as spill registers (these registers are normally those used to pass parameters and return values).
However, some machines have so few registers of certain classes that there would not be enough
registers to use as spill registers if this were done (for sure the case for Thor). Therefore we define
'SMALL_REGISTER_CLASSESWhen this is defined, the compiler allows registers explicitly

used in the RTL to be used as spill registers but avoids extending the lifetime of these registers.

The macroCONST_OK_FOR_LETTER_P (VALUE, C) represents a C expression that

defines the machine-dependent operand constraint letters that specify particular ranges of integer
values. If C is one of those letters, the expression should check\t#atUE, an integer, is in

the appropriate range and retutnif so, '0’ otherwise. If C is not one of those letters, the value
should be 0’ regardless of VALUE. In Thor we have six letters defined frohi to ’N which

each defines an integer ranged Table b The ranges are based on Thor’s different instruction
formats. CONST_DOUBLE_OK _FOR_LETTER_P(VALUE, Cis a similar C expression that
defines the machine-dependent operand constraint letters that specify particular ranges of
‘const_double ’values. Since no double-float data is allowed in the current version this macro

is hard-coded ta0’.

Table 5 Operand constraint letters defined byCONST_OK_FOR_LETTER’ P

Letter Lower bound Higher bound
i -800000;¢ FFFFFRg
' 016 FFFFFRg
'K -800000;4 7TFFFFRg
v -8016 TF6

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag51

Table 5 Operand constraint letters defined byCONST_OK_FOR_LETTER’ P

Letter Lower bound Higher bound
'™ 016 FFie
‘N 016 2016

The macroEXTRA_CONSTRAINT (VALUE, C) ' represents a C expression that defines the
optional machine-dependent constraint letters that can be used to segregate specific types of oper-
ands, usually memory references, for the target machine. It should fetiirnVALUE corre-

sponds to the operand type represented by the constraint@ttér C is not defined as an extra
constraint, the value returned should @erégardless of VALUE. For Thor we define the letter

'Q as a constraint for PC- or stack-relative memory address.

"PREFERRED_RELOAD_CLASS (X, CLASS) s a C expression that places additional
restrictions on the register class to use when it is necessary to copyXaiie & register in
class CLASS. The value is a register class; perhapsASS, or perhaps another, smaller class.
For Thor it is sufficient to returrCLASS when this macro is called.

"CLASS_MAX_NREGS (CLASS, MODE)is a C expression for the maximum number of con-
secutive registers of clasSLASS needed to hold a value of moddODE This is closely

related to the macrdfARD_REGNO_NREGI& fact, the value of the macro
"CLASS_MAX_NREGS (CLASS, MODE)should be the maximum value of
"HARD_REGNO_NREGS (REGNO, MODE)r all 'REGNOvalues in the clas<CLASS. In
principle we could have defined this macrolbfor Thor, but we use an arithmetic expression
instead, built from macros defined earlier, that presently always will evaluate Y do this in
order to be independent if changes are made to the earlier defined macros.

"REGNO_OK_FOR_BASE_P (NUMand 'REGNO_OK_FOR_INDEX_P (NUM)s a C

expression which is nonzero if register numigdMis suitable for use as an index/base register

in operand addresses. It may either be a suitable hard register or a pseudo register that has been
allocated to such a hard register. The index macro returns tiig¥is equal to theTOP-reg-

ister while the base macro returns trueNlUMis any of Thor’s four registers except thHeOS-

register.

3.3.25 Stack and calling

There is a macro controlling which direction the stack grows, called
'STACK_GROWS_DOWNWARI3 is set for Thor, and the same is true about a corresponding
macro FRAME_GROWS_DOWNWARIZh controls the frame layout.

"FRAME_POINTER_REQUIREB a macro which tells if the frame pointer must exist. Value

should be nonzero if functions must have frame pointers. Zero means the frame pointer need not
be set up (and parameters may be accessed via the stack pointer) in functions that seem suitable.
For Thor we definitely want to eliminate the frame pointer since we do not have one.

"RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE)epresents a C expression that should
indicate the number of bytes of its own arguments that a function pops on returnigt thre
function pops no arguments and the caller must therefore pop them all after the function returns.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag52

"FUNDECULis a C variable whose value is a tree node that describes the function in question.
'SIZE " is the number of bytes of arguments passed on the stack. On Thor we $&filirhwhen

we have a fixed number of arguments or when we haiwegicit library call. If the function has

a variable number of arguments we retin’

"FUNCTION_ARG (CUM, MODE, TYPE, NAMED) ' is a C expression that controls whether a
function argument is passed in a register, and which register. Value is zero to push the argument
on the stack, or a hard register in which to store the argument. For Thor all arguments are passed
on the stack, and therefore the value of the macro is always zero.

"CUMULATIVE_ARGSepresents a C type for declaring a variable that is used as the first argu-
ment of FUNCTION_ARGand other related values. For some target machines, thenypé ’

suffices and can hold the number of bytes of argument so far. There is no need to store anything in
"CUMULATIVE_ARGSor target machines on which all arguments are passed on the stack, like
Thor. However, the data structure must exist and should not be empty, so we use’

"INIT_CUMULATIVE_ARGS (CUM, FNTYPE, LIBNAME) ' is a C statement for initializing
the variable CUMfor the state at the beginning of the argument list. The variable has type
"CUMULATIVE_ARGSThe value of FNTYPE is the tree node for the data type of the function
which will receive the args, 00’ if the args are to a compiler support library function. For Thor
this macro always initialize the variabl@UMto zero.

"FUNCTION_ARG_ADVANCE (CUM, MODE, TYPE, NAMED)is a C statement to update

the summarizer variabl€UNto advance past an argument in the argument list. The values
"MODE '’ TYPE and 'NAMEDdescribe that argument. This macro need not do anything if the
argument in question was passed on the stack. The compiler knows how to track the amount of
stack space used for arguments without any special help, so for Thor this macro need not do any-
thing.

"FUNCTION_VALUE(VALTYPE, FUNCY) defines how to find the value returned by a function.
The macro represents a C expression to create an RTX representing the place where a function
returns a value of data typéALTYPE, which is the data type of the value (as a tree). If the pre-
cise function being called is knowmUNC s its 'FUNCTION_DECE otherwise, FUNCis '0’.

On Thor, we always create a RTX with tH&P-register where scalar returns always occur.

"LIBCALL_VALUE (MODE) ' is a C expression to create an RTX representing the place where a
library function returns a value of moddODE It is possible to use a different value-returning
convention for specific functions when all their calls are known, but for Thor we always return a
RTX with the TOP-register. Note thalibrary functionin this context means a compiler support
routine, used to perform arithmetic, whose name is known specially by the compiler and was not
mentioned in the C code being compilesle¢ 3.3.7.2, The thor-libgccl.asm’¥ile

"FUNCTION_VALUE_REGNO_P (REGNQOEpresents a C predicate that is nonzero if
"REGNQs the number of a hard register in which the values of called function may be returned.
In Thor’s case the macro is only true wh®EGNQOs equal to TOP.

'DEFAULT_PCC_STRUCT_RETUR$defined to 1’ since all structure and union return val-
ues must be in memory.

'STRUCT_VALUEcould be defined as an expression returning an RTX for the place where the

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pagh3

address is passed. For Thor we retlrpiie. the address is passed as an “invisible” first argu-
ment.

"FUNCTION_PROLOGUE (FILE, SIZE) ’represents a C compound statement (usually a C
block) that outputs the assembler code for entry to a function. The prologue is responsible for set-
ting up the stack frame, initializing the frame pointer register (if there is one), saving registers that
must be saved, and allocatir®jZE ’ additional bytes of storage for the local variabl&ZE"’

Is an integer.FILE ' is a stdio stream to which the assembler code should be output. For Thor an
additional word is allocated for th& OP-register.

This macro is a good place to put code initializing the processing of a new function. Therefore, we
allocate the arraythor_top_offset_at ', and set the variabléhor_top_offset "to

zero inside this macro. We use the GNU defined funckoralloc ' when allocating memory,

since it checks whether the desired amount of space is available and aborts if this is not the case.
The arraythor_top_offset_at " holds as many integers as there are labels in the compiled
program. Its purpose is to keep track of stack offsets when jumping across basic blocks.

"EXIT_IGNORE_STACKshould be defined as a C expression that is nonzero if the return
instruction or the function epilogue ignores the value of the stack pointer; in other words, if it is
safe to delete an instruction to adjust the stack pointer before a return from the function. The value
is tested only in functions that have frame pointers. On Thor we always need to keep track of the
stack pointer, therefore the macro is tied to zero.

"FUNCTION_EPILOGUE (FILE, SIZE) 'is replaced with a C compound statement (a block)
that outputs the assembler code for exit from a function. The epilogue is responsible for restoring
the saved registers and stack pointer to their values when the function was called, and returning
control to the caller. This macro takes the same arguments as the macro
"FUNCTION_PROLOGUBN Thor a sequence of instructiof®ET, ' POP and 'MTOSis

emitted in order to copy the calleeBOP-reg to the caller’'sTOP-reg, and then removing local
variables. TheRET instruction’s two delay slots come in use here and are filled with the two
other instructions. We must also free the arthgr _top_offset_at " and perform a check

on the global variableghor_top_offset ' to verify that its value is zero. If it is not equal to

zero the stack has been corrupted somewhere in the function.

3.3.2.6 Addressing modes

"MAX_REGS_PER_ADDRES$Sa macro defining a number which is the maximum number of
registers that can appear in a valid memory address.

"CONSTANT_ADDRESS P (X)is a C predicate that i4d’ if the RTX "X’ is a constant which is
a valid address. Sometimes one can define this macro diredBPteSTANT_Rwhich accepts

integer-values expressions whose values are not explicitly known, susymdml_ref

'label_ref ', and 'high * expressions andcbnst ' arithmetic expressions, in addition to
‘const_int " and ‘const_double ' expressions. But for Thor we are more restrictive and
allow just 'symbol_ref ’,’label_ref *and 'const .

"LEGITIMATE_CONSTANT _P (X)'is a C predicate that is nonzeroX is a legitimate con-
stant for an immediate operand on the target machine. On Thor this macro should be true when-
ever CONSTANT_ADDRESS_P (X)is true plus the cases wheX is 'const_int " or

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag54

‘const_double .

We have two alternate definitions for each of the ma®&$s OK_FOR... P’, which assume

that the arg is a REG RTX and check its validity for a certain class. The usual definition accepts
all pseudo regs; the other rejects them unless they have been allocated to suitable hard regs. The
symbol REG_OK_STRICTcauses the latter definition to be used.

"REG_OK_FOR_BASE_P (X)is a C expression that is nonzeroXf is valid for use as a base
register. For hard registers, it should always accept those which the hardware permits and reject
the others. Whether the macro accepts or rejects pseudo registers must be controlled by
"REG_OK_STRICTas described above. This usually requires two variant definitions, of which
"REG_OK_STRICTcontrols the one actually used. For Thor, in the strict case, we allow every-
thing the macroREGNO_OK_FOR_BASE a&tcepts. In the unstrict case we also allow tKat ’

is a pseudo register, apart from the cases the strict variant accepts.

"REG_OK_FOR_INDEX P (X) is a C expression similar to the previous, it returns nonzero if
"X is valid for use as an index registdREG_OK_STRICTselects the one actually used, as
above. For Thor, in the strict case, we allow everything m&iEeGsNO _OK_FOR_INDEX’ P
accepts. In the unstrict case we also allow tKais’a pseudo register, apart from the cases the
strict variant accepts.

'"GO_IF_LEGITIMATE_ADDRESS (MODE, X, LABEL) 'is a very important macro repre-
sented by a C compound statement with a conditiguab’LABEL; ' executed if X' (an RTX)

Is a legitimate memory address on the target machine for a memory operand doateWe

have split this macro into several simpler macros working as subroutines, to preserve readability.
The names of those macros aRC’ OR_STACK_RELATIVE_P(X),
"MEM_INDIRECT_RELATIVE_P(X)’, " STACK_RELATIVE_P(X)’,

"MEM_INDIRECT_P(X)'. From 'GO_IF_LEGITIMATE_ADDRESSthe first two are called,

and the other two are used from within those.

"PC_OR_STACK_RELATIVE_P(X) checks if X' is a constant or satisfying
"STACK_RELATIVE_P(X)’, which in turn verifies if X is a legitimate stack relative address.

We must permitTOP relative addressesTOP as a base register). It is not possible to generate
RTL with only one base register, so we must be able to handle stack indirect addresses as well.
This is actually the same as tA€OP relative addressing, since odrOP-register resides on the
stack. All this means that we can permit all kindsMEM(PC- or stack relative) indirect

addresses sinceymbol_ref ’-expressions can be handled in the same way as stack references.
A pseudo register is eventually transformed into T@P-register or a stack-position. So, like

the TOP-register, all pseudo registers are also equivalent to stack relative addresses.

3.3.2.7 Condition codes

"NOTICE_UPDATE_CC (EXP, INSN) "is a C compound statement to set the components of
'cc_status ', which is a C structure containing information about flags in the machine, appro-
priately for an instructionlNSN’ whose body iSEXP. It is this macro’s responsibility to recog-

nize instructions that set the condition code as a by-product of other activity as well as those that
explicitly set the codes. This C block makes use of the machine description facility called
attributes ¢ee 2.2.4.2, Target Description Macros, '.h'Jil# the condition codes are properly

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag55

updated for each instruction, the compiler may be able to remove certain instructions whose only
task is to set theCC-register (the SR-register on Thor).

3.3.28 Assembler format

This section discusses various macros designed to control the assembler output, for example, the
floating point format and register names. All the names of the macros dealing with these matters
start with the character sequen8&M . Many of macros belonging to this section will not be
described here because they are not very essential to our solution, since they deal with matters
like the look of the comment character in the assembler etc. We consider macros not described
here either belonging to this category or being self-explanatory.

There is a set of macros starting wig&M_OUTPUT which handles the output format of the
various types in the C language. These macros are called when the compiler wants to swap data
out to the memory and therefore the macros should also output certain assembler directives in
advance of the data otherwise the assembler will not be able to interpret the data correctly. The
directives given include DATAfor various kinds of integer output both hex-style and ordinary,
'DATAF for floating-point data andJATAS for characters. There is another directive called

"REP used for uninitialized data, it takes two “arguments” separated by a comma, the second for
the number of words and the first for what to put in them (usuyFor example the directive

'L1 REP 0,5 ’means thatll’ is a label to a uninitialized data area holding five words, each
zeroed.

"ASM_GLOBALIZE_LABEL(FILE,NAME)’ and
"ASM_OUTPUT_EXTERNAL(FILE,DECL,NAME)are two macros called when the compiler

wants to inform the assembler/linker that a label/variable is globally accessible respectively
defined externally. There are two directives designed for this purp@EF and 'XREF. For

example, if one wants to access a global variabddR, the compiler outputsVAR XREF in the
beginning of the assembler file. This way one can arbitrarily ref&AR 'in the assembler file

without any complaints when assembling, these external references are up to the linker to resolve.

The macroPRINT_OPERAND (FILE, X, CODE) "handles all possible cases when operands

to the assembler instructions are to be output. It calls in turn a C function with the same name but
with lower case letters (for easier debugging) which is defined inHde.c ’'. Here we disas-

semble and test the RTL-expressighih several stages in order to find out what kind of operand
itis. All addresses accepted as legal in maGi© ' IF_LEGITIMATE_ADDRESS (MODE, X,

LABEL)’ should be taken into account here, and if an operand slips through the net of tests the
compiler will ultimately crash. The readers can verify for themselves that all legal addresses by
the means ofGO_IF_LEGITIMATE_ADDRESS (MODE, X, LABEL) ' are taken care of in

this macro. When printing stack-relative addresses our own varihbietop_offset "is of

vital interest, since it reveals the additional offset one should add to the operand in order to get the
correct stack offset. The paramet€ODEalso helps the macro to output the correct stack offset

in some cases. The contents@ODEis the optional low-case letter found directly after te ’
character in théemplate outputield in some of thedefine_insn ’ patterns in the

"'thor.md ’-file. We have in our implementation used three letters for this purposéy’ and

'h’. "PRINT_OPERAND_PUNCT_VALID_P (CODE)is a C expression which evaluates to

true if 'CODEIis a valid punctuation character for use in tRRINT_OPERANDmacro, in addi-

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag56

tion to the usual on@6. We have defined one additional punctuation chara&tdéo’use for
instructions utilizing thedefine_delay ' facility (currently used only in unconditional jumps,
see 3.3.5.2, Delay slot fillipgi.e. instructions that let the GNU CC fill their delay slots. If the
"CODEparameter is tested as equal to chara¢tert’means that at most twdOP-instructions
are to be output. How manilOP-instructions depends on the number of slots GNU CC suc-
ceeded to fill. The global functiodbr_sequence_length () ' reveals this by returning the
number of filled slots (0, 1 or 2 filled).

Table 6 Thor defined letters following the punctuation character%.

Letter Meaning
'h’ Printing a 'CONST _INT object in hexadecimal styld §#...).
A Adding an offset of 1 to all stack-relative addresses.
'y’ Adding an offset of 2 to all stack-relative addresses.

"ASM_OUTPUT_ALIGN(FILE,LOG)’ is a statement to output to th&dio ’ stream FILE’
an assembler command to advance the location counter to a multiple of 2 k@kirbytes.
"LOG will be a C expression of typ@t . Since the Thor assembler does not have alnyri
directive we have solved this by outputtindATA 0’ directive which implicitly will align the
data.

"ASM_OUTPUT_SKIP (STREAM, NBYTES) is a C statement to output to thetdio ’
stream STREAMan assembler instruction to advance the location countéMBYTES bytes.
Those bytes should be zero when loade&YTES will be a C expression of typént . For
Thor we output theREP directive for NBYTESwords initializing them all to zero.

3.3.29 Miscellaneous

In this section we define various macros which do not fit in any other of the sections. Macros of
little interest to the overall solution will not be discussed here.

With macro WORD_REGISTER_OPERATION& force the compiler to work in words when
different modes between operands in an operation occurs. (Must be defined, but it is not used on
Thor since we only have word operations).

"Pmod€ is an alias for the machine mode for pointers, which on Thor is equ@lrioode’.

"FUNCTION_MODEs an alias for the machine mode used for memory references to functions
being called, incall * RTL expressions. On Thor this macro is definedQtniode’.

"NO_FUNCTION_CSEhould be defined if it is as good or better to call a constant function
address than to call an address kept in a register. Since we do not want any calls via registers it is
defined on Thor.

"NO_RECURSIVE_FUNCTION_CSsghould be defined if it is as good or better for a function to
call itself with an explicit address than to call an address kept in a register. Analogous to the pre-
vious macro, it is defined for Thor.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag57

3.3.2.10 Compiler options that are forced to be activated

"OPTIMIZATION_OPTIONS (LEVEL) ’ controls options that should always be active when
compiling. Some machines may desire to change which optimizations are performed for various
optimization levels. This macro, if defined, is executed once just after the optimization level is
determined and before the remainder of the command options have been parsed. Values set in this
macro are used as the default values for the other command line options.

For Thor we desire that the compiler omits the frame pointer and replaces it willDtBe ’

pointer instead, this action is controlled by the optibomit_frame_pointer "which in

turn sets the flaglag_omit_frame_pointer "internally in the compiler. Thus the flag is

set for Thor. Furthermore we cannot allow the compiler to defer polpmegstack. This behav-

lour is beneficial on other machines when performing several calls to subroutines accompanied by
preceding pushes of arguments, in this case one can delay the cleaning of the stack after the func-
tions has returned with a humungous move of the stack-pointer when all calls are done. With Thor
we cannot allow such operations and want to forbid it in all compilations. One enables this behav-
iour with the option-fdefer_pop ’ which sets the flagilag_defer_pop ’. This flag is

always zeroed for Thor.

The macroOVERRIDE_OPTIONSoutputs warnings if an unhealthy mix of options are acti-

vated when compiling. Sometimes certain combinations of command options do not make sense
on a particular target machine. One can define a m@y&RRIDE_OPTIONSo take account

of this. If defined, this macro is executed once just after all the command options have been
parsed. If one wants to omit the frame pointer (which is always performed) a message is put on
the 'stderr '’ stream informing the user that this is always done. The same thing is done if some-
one wants to defer popping (which is never allowed), then we point out that this cannot be done.

3.3.3 Machine description instruction patterns

To fully understand outthor.md ’-file, it can be a good idea to first resection 2.2.4.1 'The
Machine Description file, ".md’-file’You can find a listing of the file iIRAPPENDIX A - 'Listing
of machine dependent files’

As explained in the strategy sectiaeé¢ 3.2, Strategywe usedefine_expand ’-patterns to
implement most of the standard names available to the RTX generating pass. The RTL-instruc-
tions thus created are then later recognizedibfirie_insn ’-patterns, which generate the

actual assembler output. A few functions are directly implementatéise insn ’-patterns,
handling both the RTL generation and the assembler output.

Each define_expand ’-pattern that we have defined, normally implements a sort of three-
address statement. The operation handled is given by the standard name of the pattern, and the
RTL generating pass can send three general operands to the pattern. For examaplggithe ’
standard name handles the “bitwise AND” operation. It is implemented as a

"define_expand ’-pattern, which takes three general operands: the destination operand and the
two arguments to the binary operatAND. The pattern transforms this into three RTL-instruc-
tions. First a push instruction, then the instruction doing the operation, and finally a pop instruc-

1. With flag ~fdefer-pop ' the compiler postpone several stack cleanM@OSinstructions into a single
instruction of that kind, with it's parameter equal to the sum of operands of all the postponed instructions.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pagh8

tion. The example below illustrates the transformations done. It is representative for most patterns
we have written.

The RTL generating pass wants to output the following three-address
statement, by using the "andqi3’-pattern:

opl = op2 AND op3

This is transformed and emitted as RTL-instructions as:

tmp = op2 (PSH op2)
tmp = tmp AND op3 (AND op3)
opl =tmp (POP opl)

Where 'tmp’ is our TMP-register.
Example 12 The job done by a typicaldefine_expand ’-pattern.

The 'define_expand ’-patterns also does some more complicated decisions. If the operator is
commutative, the operands may be exchanged. This is desired in some cases, because the operand
used in the operator instruction (op&Example 12 must be simple enough for Thor to handle it.

Thor’s instructions only permits immediate and pc/stack relative addressing. Therefore, it is desir-
able that a complex operand (e.g. indirect address) ends up in the push operan&xXapile

12), because thalefine_insn ’-pattern handling the push is built to cope with all kinds of
operands. If both operands of the operators are complex, one of them must be reloaded via an
additional pseudo register.

Almost everywhere in thelefine_expand ’-patterns we usegeneral_operand ' as the
predicate, since we must be able to handle all different cases. This is not true for the
'define_insn ’-patterns, where we have introduced some other predicates. The two most com-

monly used predicates iBrip_register_operand "and 'simple_operand . They are
needed to catch the RTXs generated bydleéine_expand ’-patterns. The
"tmp_register_operand " only accepts theTMP-register. The sSimple_operand '

accepts an operand simple enough to fit in a normal Thor assembler instruction.

The most commonly used constraints are listed in the table below. They usually correspond to the
different addressing modes supported by Thor. Some of them are defined in the macros
'"REG_CLASS_FROM_LETTERCONST_OK_FOR_LETTER’ &nd

"EXTRA_CONSTRAINTsee 3.3.2.4 'Registers and Register Clags#® others are standard
constraints defined by GNU CC.

Table 7 Commonly used constraints inthor.md

Constraint Meaning

i An immediate operand, with a value that can be handled by an immediate
assembler instruction. If the value lies outside the interval defindd kiyrust
be put in aDAT Acdirective.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag59

Table 7 Commonly used constraints inthor.md .

Constraint Meaning

'Q A pc or stack relative address. This also includes pseudo registers, since they

will finally end up in a stack slot.

The register classTOP_REGi.e. the TOP-register.

Qt’ The 'Q and 't ’ constraints are often used together, because the TOP-regigter

resides on the stack and are therefore accessed with a stack relative addréss. The
constraint Qt’ is true wheneverQ or 't ' is true.

'm A memory operand. Often this constraint comes after@iéconstraint. In this

way it catches the complex, indirect memory operands not caught btthe ’
constraint. When used with the predicaienple_operand it catches every
operand passed by the predicate exceptlid:register. A peculiar thing is
that when this constraint is used, it enables the reloading of illegal constants to a
'DATAdirective. This reloading does not work ifi'is combined, like the
'Qt’, with another constraint.

Often used to represent the TOP-register where no other kind of register gper-
and may occur. It would have been nice to be able to combine this with the ’
constraint and use the combined constraimt, but this would disable the
reloading of illegal constants, as explained above.

1%

Since Thor is a RISC processor, it does not support a large number of addressing modes but rather
a restricted set, which seems to be the most natural one when working with a stack. Not all
instructions support each addressing mode, but usually relative addressing is the most utilized
one. The addressing modes available are:

1)

2)

3)

4)

Relative addressingVhich is usually split further into stack or PC -rela-
tive addressing. When addressing stack-relatively one refers to a word
placed at a arbitrarily offset from top-of-stack, and performs the operation
with the value at top of stack (the internal TOP register). If one uses the
latter alternative one refers to data with an offset from the program coun-
ter.

Indirect addressingThe strategy here is to place the indirect address on

the top of the stack and perform the operation via this address. This is the
most advanced addressing mode one can use, and one must take care how
the instructions are emitted since the indirect address used must be com-
puted two instructions in advanceé 2.1.3.2, Address Generation Sjage

Immediate addressingdere we use an immediate value directly and oper-
ate with it as usual together with the value at top of the stack (the internal
TOP register).

Register Some instructions, in particular the data move instructions, can
work with the contents in Thor’s registers directly, for example one can
perform a jump by popping to the PC register.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag60

3.3.3.1 An example of how a simple C program is handled

In order to enlighten the readers as to how the compiler works with the standard name patterns
versus the nameless patterns, we here give an example of how a simple C program is compiled
and what patterns are generated. When reading the rest of this section one should preferably keep
an eye on the appendix where the listing of aud”-file is found Gee A.1, thor.md

void main(a,b,c) /* 'main’ takes args. otherwise the */
int a,b,c; /*whole prog. will be optimized */
{ [* away *
loc: I* A label */
a=-b*c; /[*Some arithmetic operations */
goto loc; [* Forcing the compiler to generate */
} [* an uncond.jump pattern */

Example 13 Source code of the C program

The C program given above contains some simple arithmetic operations and an unconditional
jump to a label. The program is compiled with the command tiee-gcc -S -da -O -
nodelayed-branch example.c ". The compiler options mean in turn; an assembler file is
wanted {S), dump files in every staged@), optimizations {O) and finally that no delay slot

filling is desired {fno-delayed-branch). The reason for not wanting any delayed branch
scheduling is that we prefer to have a very simple and clear example showing how the code is pro-
duced. The produced assembler file looks like this:

; Assembler file from Thor C Cross Compiler, version
1.0.0
; Generated by thor-gcc.
code SECT 1,R,C
DATA O ; align function

_main XDEF
__main:
MTOS -3 ; local vars(2) + TOP reg(1)
L2:
PSH 5 : S+5
NOT -1
; PEEP - pop,push (dead)
MUL 7 : S+6
; PEEP - pop,push (dead)
POP5 ;S+4
JR L2
NOP
NOP
RET 3

POP 7 ; copy TOP-reg to caller's TOP-reg

uonelauab 11y Jo ajdwex3 QT ainbi4

Statement:

Standard
name:

RTL-
generation

RTX

Assem-
bler out-
put

Assembler

pseudol = - b;

negqi2

"negqi2"

define_expand

(set
| (reg:Ql 1 TMP)
‘(mem:QI

I | (reg:QI 1 TMP)
|| (neg:Q
(plus:Ql (

| (reg:Ql 2 TOS) L

| (const_int5)))) (]

QI
reg:Ql 1 TMP)))

pseudo?2 = pseudol * c;

mulqi3

a = pseudoz;

movqi

goto loc;

jump

define_expand
"mulqi3"

define_expand

"mOVC]i"

define_insn
lljumpll

I |(mem:QI
| ‘(plus:QI
(reg:Ql 2 TOS)
1| (const_int 2)))
|| (reg:QlI 1 TMP))

= = 7 [set
I | (reg:QI 1 TMP)
| ‘(mem:QI
(plus:QIl
| (reg:Ql 2 TOS)
I} (const_int 2))))

e e

I | (reg:Q1 1 TMP)
| ‘(mult:QI

(reg:Ql 1 TMP)
I | (mem:QI
I} (plus:Ql
(reg:QI 2 TOS)

., (const_inte)))

T 77 [ser(po)

I |(mem:QI I |(reg:QI 1 TMP) I |(mem:QI
| | (plus:QlI | ‘(mem:QI | | (plus:Ql | |
(reg:QI 2 TOS) (plus:QlI (reg:QI 2 TOS)

| (const_int 1))
I |(reg:Ql 1 TMP))

1| (reg:Q1 2 TOS)
|| (const_int 1))))

h (const_int 4)))
I |(reg:Ql 1 TMP))

I |(label_ref 7))

o 4o [T O T TR, -
\ v o \ \
define_insn define_insn define_peephole define_insn define_peephole define_insn define_insn
"*movqi_psh_tmp" "*negqi2" (pop-push) "*mulqi3" (pop-push) "*movqi_pop_tmp" "jump"
PSH 5 NOT -1 MUL 7 POP 5 JR L2
NOP
NOP

3S/8200/1LN1/H0O1L :oN uswnoog

G661 19quadaq :ereq

Tanss|

T9bed

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag62

MTOS 6 ;local vars(2) + 1 + pop_args(3)

Example 14 Assembler output of the discussed C program

As one can see the compiler has succeeded in removing two pairs of unnecessary data move
instructions ¢ee 3.3.5.1, Machine-specific peephole optimizgtidwagh of the type that pop to

the same temporary memory location as the next instruction pushes. The function return sequence
as well as the function prologue are of the normal type. No RTL code are ever generated for the
function return since they are handled in the macro cdletiCTION_EPILOGUE This is also

partly true for the function entrances where allocation for local variables is taken care of in the
macro calledFUNCTION_PROLOGUH herefore the readers should be aware of this fact when
studying the RTL dumps from the example program, so no misunderstandings occurs.

An illustrative picture over the most important stages in the compiler are giveguire 10
'Example of RTL generationThis picture shows the work done on the two statements in the C
block (see Example 13, Source code of the C proyram

The first row in the picturestatemerjtshows how the compiler has disassembled the syntax tree

into statements of low abstraction. We use a sort of C syntax to illustrate the statements. As one
can see the multiplication and the negation action have been given a statement of their own, since
the compiler has detected that the target machine must use two patterns to solve the first statement
in the source code. At this stage the compiler uses so called pseudo registers when performing
arithmetic and data moves. The third pseudo-statement is an unnecessary data move action, since
the multiplication could write its result directly to thee variable. These redundant data moves

are very hard to avoid generating, but as one can see we have designed a special peephole pattern
that will remove such moves.

The second row in the picturstdndard namgsshows which standard name the compiler has
found to match each statement. As we see, inRfié-generatiohrow, the first three are state-

ments designed adéfine_expand ’-expressions and only thgimp ’ standard name is a true
‘define_insn .

TheRTXrow shows all the RTL-expressions generated after the compiler has chosen the standard
name. Observe that only the expression field in the RTL objects are listed in the pictiR@XThe
row’s listings are taken from agreg ' dump file, i.e. after the reload phase has been completed.
Therefore the pseudo registers have been converted into machine registers and since we have
given each of the registers a unique name one can see how the compiler utilize them in the listings
in theRTXrow. One should notice that the registBMP is not a Thor register but merely a tem-
porary TOP-register used in thedefine_expand ’-patterns ¢ee 3.2, Strategyyln between
RTL-generatiorandRTXvarious kinds of optimizations occur (if compiling witl©”).

Theassembler outpubw shows whichdefine_insn ’-expressions in fact produce the assem-

bler code. These can be of either the standard name category or the nameless category, where we
have used the convention to use the charattén beginning of a nameless pattern’s name. In

our program there was only one RTL object that remained identical throughout the chain of
passes, namelyump '. This is due to the fact thgump ' is implemented directly as a

‘define_insn ’

Before the actual assembler is produced the compiler scans through the program is search of

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag63

peephole optimization matches. In this case the compiler has found two suitable peephole trans-
formations, both of the pop/push kind, where th&p’/’ push ’ pairs simply could be removed
without any change in the program’s semantics. The last row in the pssen{blershows the

real assembler code output from the RTL-expressses Example 14, Assembler output of the
discussed C program

3.3.3.2 Data move instructions

The standard names corresponding to data move pattermsca€,’ where X' stands for an
arbitrary mode. The only standard names of this kind that we decided to suppo\ge”and
"movdf ’, since quarter-word operations are the only ones needed. Note that here quarter-word
means operating with 32 bits, not 8, since Thor itself is not byte addressab@ 3, Solutign

These patterns are not used solely in the RTL generation pass. Even the reload pass can generate
move instructions to copy values from stack slots into temporary registers. When it does so, one

of the operands is a hard register and the other is an operand that may need to be reloaded into a
register. Therefore, when given such a pair of operands, the pattern must generate RTL which
needs no reloading and needs no temporary registers. For example, if you support the pattern with
a 'define_expand ’, then in such a case th@efine_expand ' must neither call

'force_reg ' nor any other such function which might generate new pseudo registers.

The only type of data moves produced by our compiler are different kinds of push- and pop-
instructions, that move data to, or away from the top of the stack. There are four kinds of address-
ing modes to be concerned about when dealing with data meees3.3.3, Machine description
instruction patterns Observe that pop instructions cannot be used in immediate addressing

mode. The idea when utilizing these instructions is to first push a wor@®/” TMP, then

(optionally) perform an operation with its contents, and finally pop it back to somewhere in the
stack. When dealing with pointers in the C language, which is often the case, one can see that usu-
ally some sort of indirect addressing is used. One should observe that the indirect address must be
calculated two instructions before the push/pop-instruction, due to the pipeline design incorpo-
rated gee 2.1.3.2, Address Generation Sjage

Everyone that has studied the Thor instruction formats thoroughly will notice that there exists a
limitation in terms of how big the offsets can be in relative addressing, but one can assume that
the computer systems are built according to those limitations, and no concern need to be taken in
these cases. Otherwise we would have been forced to use indirect addressing almost always.
Exceeding these limitations will anyhow result in errors when loading the code into the target
machine.

Finally, one should observe that theBSH/ POP-instructions discussed above are the ones cor-
responding to a register machine’s load/store-instructions, and during RTL-generation other,
“true” (normal), push/pop-patterns are generated. In a register machine these are the only ones
operating on the stack, for example when pushing arguments before a call. These should also be
handled when designing the nameless patterns.

3.3.3.2.1 Standard move patterns

The standard namembvqgi ' and 'movgf ' are implemented asléfine_expand ’-patterns,
which in turn generate a sequence of patterns which will be picked up by other patterns. Those

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag64

patterns are of the nameless kind, but they output the real assembler, and are thus more interest-
ing. The function controlling this new generation of RTL objects is called

"emit_move_sequence ’and is found in the filethor.c . As predicate in those patterns
'general_operand ’is used in order to allow every possible data reference. A mBONE

is inserted after the function since we do not desire that the template itself should be emitted, just
the sequence generated by the function. The macro inhibits this undesired behaviour by telling the
compiler we have taken care of the RTL-generation that should be the effect of the
"define_expand ' pattern. No constraints whatsoever are found in the expand expressions
since we must be ready to receive every possible reference.

3.3.3.2.2 Nameless patterns handling data moves

Two groups among the nameless move patterns are segregated immediately; those which are true
push/pop-templates, and those which are not (load/store-instructions interpreted as"Bidt’'s ’
"POP-instructions). The true push/pop-patterns are recognized since one of their predicates is
"push_operand ’, which tests if the operand is of the desired type. There are two patterns of the
push type, one foIQF and one for Ql’-mode. In the rest of the patterns the predicate
"tmp_register_operand "is used, which tests if th& MP-register generated from the

expand patterns is utilizedyéneral_operand ’ are used in both groups as their second predi-
cate. Both groups have the same approach in terms of using the constraints in their second oper-
and, one constraint for the immediate case, one for PC- or stack-relative addressing along with
referencing via theTOP-register and the last one addressing with a more general memory refer-
ence (I -, " Qt’- and 'mi-constraint,see APPENDIX A -, Listing of machine dependen) files

Observe that when representing moves in RTL with floating-point data the immediate case is
omitted, since there is no such instruction in the Thor architecture’s instruction set.

In the “true” push case, the predicate in the pattern’s first operand is a memory reference, and in
the other patterns a register operand. This means that the first group picks up every RTL with a
push operand as the first operand, and an arbitrary second operand, while the other group wants
the TMP-register as their first and likewise as their second operand. After the RTL code has cho-
sen the right pattern, it is further examined and checked against the constraints, and depending on
which addressing mode the RTL expression operates in, the correct assembler output sequence is
chosen in the succeeding C block.

In these patterns we introduce a global varialier’ top_offset ', in order to keep track of

the number of words pushed on the stack by normal, “true” pushes, i.e. the stack offset to the
"TOP-register and the extra offset to add when addressing the local stack slots. It is incremented
by one in the pattern dealing with the normal pushes, but also some other patterns update it.

The variablewhich_alternative "is a label handled by the compiler to indicate which con-
straint accepted the data reference. We use it to index an array of assembler strings, one for each
constraint. There are several C help functions dedicated to assist in the assembler output and deal-
ing with addresses so complex that no direct assembler string can be chosen right away. As one
can see we are not using any conditions in our patterns.

3.3.3.3 Arithmetic operations
All the patterns handling arithmetic operations are designed in pretty much the same way as the

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag65

move patterns, with some minor differences between the operators, since, for example, subtrac-
tion is not commutative in the sense multiplication and addition are. This implies that the imple-
mentation of multiplication and addition are identical, but that is not entirely true either.
Subtraction on the other side differ from division, since besides the usual “subtract’-instruction
also “subtract reverse”-instructions are included in the instruction set of Thor. We found it most
convenient to solve the arithmetic constructs in a way resembling the previous parsgeaph (
3.3.3.2, Data move instructionsn terms of having adefine_expand ' accepting virtually
everything, and in this stage splitting up and generating other RTL patterns that are picked up by
the real define_insn ’-templates.

The basic idea when performing an arithmetic operation, is to first push one operand on the stack,
perform the operation and then ultimately pop the result to the desired position in the stack.
Depending on the commutativity of the operation, there is a possibility to swap the operands if
that makes it easier to generate code for it. This way of solving the problem makes the expand
expressions responsible for generating code for the preceding push sequence and the succeeding
pop sequence.

3.3.3.3.1 Standard arithmetic patterns

For each operation, there exist two modes as ugpit, and '‘QF-mode, and therefore it is suffi-

cient with two define_expand ’-expressions for each of the operators. According to our strat-
egy, those should accept everything regardless of how complex the operands are. In the expand
expression a call is made to a C function that handles the emitting of the loading from, and storing
to the stack. A slight difference exists in the C functions called from every expand expression
(apart from the different machine modes). For addition we must take care of a special case when a
"MTOS(Move Top Of Stack) instruction is to be generated. Subtraction must decide which of the
instructions (reversed or the usual) are the most beneficial in every generation. Multiplication is
commutative and division is not.

3.3.3.3.2 Nameless arithmetic patterns
Since all of the nameless patterns are generated by the expand expression,TaniB-tkgister

is reserved for that reason, we have as predicate for one opengndegister_operand ",

which solely tests if the operand is tiéVIP-register. As the second predicate we usually use
'simple_operand ' which in turn checks that the operand is simple enough to be handled with-
out difficulty by the output template. Immediate, memory and register are used as constraints for
most patterns, since this is the most natural splitting of the possible cases if one keeps in mind the
available addressing modes. For floating-point mode there are no immediate alternatives, as dis-
cussed earlier, and the compiler will take care of the necessary reloading for placing the immedi-

ate data in memory.

The output templates are pretty straight forward, with assembler strings for each of the possible
constraints, and no modifying of the operands occurs as soon as the compiler has chosen the tem-
plate. There are double sets of instructions for dealing with subtraction, one for subtracting the
'TOP-register with a parameter and a corresponding one doing the reversed operation. The rea-
son for having two sets of instructions is that a lot of swapping on the stack will probably occur if
one set is omitted. The difference in the templates between normal and reversed is that both oper-
ands have been switched, and therefore also the corresponding predicates. The

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag66

'define_expand ’-expression outputs the alternative which it thinks is most efficient. Unfortu-
nately there is no instruction calleésBRI’, i.e. the immediate variant of reverse subtraction, and

in this case reloading occurs as usual when no suitable constraint exists, i.e. the immediate oper-
and is reloaded to memory viaRATA assembler directive.

TOP TOP - REF
SUB REF
Before After
TOP REF - TOP
SBR REF
Before After

Example 15 Stack influences of the two versions of subtract (stack-relative)

Some special cases occur among the arithmetic constructs that must be dealt with exclusively.
One case is when the compiler wants to perform an addition between the stack pointer and an
immediate value and then storing the result in Tl@P-register. The output template then con-

tains a hard-coded sequence which pushes the stack pointer and then add it with the immediate
value.

Another special case is when the compiler desires to change the stack pointer value by adding an
immediate value, i.e. performing MITOSinstruction. A new constraint controlling the immedi-

ate value is introduced here, sinb&TOSis only found in 2a and 4a formatseg 2.1.2, Architec-

ture and instruction stObserve that we must decremehbi_top_offset " with a value

equal to the operand tMTOSinstruction. In both of these exceptions a predicate
'tos_register_operand "is utilized, which only allows theTOS-register as an operand.

The pattern implementing theabdqi ’ construct must be treated specially since the interpretation

of the ‘'mod operator seems to differ between GNU CC and the Thor processor. GNU CC'’s stand-
ard patternthodgi ' means in fact the remainder of an integer division, and is thus not a true
"'mod in the way Thor defines it. The nameless pattern picking uprtbd-construct resembles

the ordinary arithmetic operation in terms of using the constraints and predicates. but the output
template is a hard-coded, five instruction sequence, doingitiee-0Operation in the same way as
GNU CC would do it.

3.3.34 Logic operations

Three logic instructions are included in Thor’s instruction set nam&ND, ' OR and 'XOR.
The two first instructions are found in two variants, one immediate and one for PC- and stack-rel-

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag67

ative addressing, buKOR on the other hand has no immediate variant. The approach of imple-
menting those instructions is very straight-forward since there are corresponding standard names
that one can use. Previous paragragae 3.3.3.3, Arithmetic operatigrshould be enough as a
guideline for the reader.

3.3.35 Negating and one-complementing

In Thor’s instruction set there exists only one instruction we can use directly when implementing
these instructions. The nameMOT which performs a logical negation on each bit of the data on

the stack top, and subtracts the sign extended immediate value in the parameter. When imple-
menting the one-complement it turns out to be very easy, as everyone can understand, one just
performs aNOT with a parameter value of zero. The negating of a integer value reveals to be just
as easy, all one have to do compared to one-complementing is to replace the parameter value with
minus one for getting the effect of negating. The floating variant of negating is not supported by
the instruction set, and the most straight forward way to solve this problem is performing a
reversed subtraction with zero, in order to get the correct negated floating-point value according
to the IEEE-754 standard.

The strategy to solve the operations, including moving to and from the stack, follows the para-
graphs discussed eatrlier, i.e. first perform a push of an argument, then execute the operation and
finally pop the result back into the stack. For all of the three standard patterns supported there is a
nameless pattern to pick up the RTL operation generated by the expand expression, except for
'negqf2 ' where the operation is an ordinary arithmetic expression due to the lack of hardware
support discussed earlier.

3.3.3.6 Condition code setting instructions

Instructions included in the instruction set, whose purpose are to test a data value for something
and depending on the result set the condition code register, af&the-'and 'CMP-instruc-

tions. In Thor two flags are usually affected, the zero #agnd the negative fladN. An

instruction changing the PC often follows after the condition code setting, which performs the
change of the control flow depending on the outcome ofGM®’ TEST. The 'CMPinstruc-

tions are found in several variants, one for each signed/unsigned integer, one for floating-point
compare and finally one for immediate integer. This instruction compares the data on the stack top
with the data indicated by the effective address. TEST instruction is only found in one vari-

ant, which compares the data indicated by the effective address, treated as a two’s complement
integer, with zero. When trying to optimize as much as possible, there is often a possibility to omit
the TEST instruction, since several other instructions also setsQ@erégister, including for
example PSH instructions. In order to omit &EST the compiler must make sure that tixC-
register has its flags set correctly, if so the compiler can removEEST” (see 3.3.5.3, Removal

of unnecessary test/compare instructjons

The design of thedefine_expand ' expression for thetést ' standard name uses a slightly
different approach than for example the arithmetic operations. Instead of generating brand new
RTL templates from the expand, we only modify the operand a little bit, forcing it to be in a regis-
ter using a functionforce_reg ’, and then let the pattern flow through to be picked up by a
nameless pattern. This modifying occurs when the operand is not a stack relative reference. The
predicate usednon_immediate_operand ’, tests if the operand is everything but a immedi-

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag68

ate reference (an immediate operand would be pretty obscure). The corresponding nameless pat-
tern then usesstack_relative_operand ' as a predicate, since we are now sure that stack
relative addressing mode is the only possible one. Nothing special happens further on in this pat-
tern, in the output template only the assembler string is found.

The implementation of theléfine_expand ' expression for thecmpqi '/’ cmpqgf ’-standard
names resembles theefine_expand ' of 'TEST, in terms of using functions that forces
operands to be laid in registers and then letting the template through, but in this case we also
allow PC-relative addressing. Only the operating modes differs in the standard ceupgis’’

and cmpgf ’, in every other sense they are identical.

As said earlier in this paragraph an unsigned variant exists for the compare instruction, and there-
fore special concern should be taken when deciding which variant to choose, the signed or the
unsigned. To fully understand our strategy when generating compare and-lsegqoénces, one

must study the instruction set and realize that there are no unsigned variants of the conditional
branch instructions, but on the other hand in GNU CC there exist such standard names. The way
to solve this problem for Thor is to generate the same branch instructions for both cases and let
the compare instruction handle the choice between signed and unsigned. When generating the
compare instruction one must look ahead to the following branch instruction to decide which
compare variant to use. For that purpose we have invented a function called
"next_ccO_user_unsigned_jump_p ' that returns true if the next RTL using theC-reg-

ister is a unsigned branch RTL. Conclusively, there exist two nameless patterns designed to pick
up the expand-expressions, one for the unsigned case and one for the signed. The condition field
Is used to separate the cases.

Since we know that the operand is forced out to a register by the expand expression if it is too
complex, we can use the predicatiriple_operand ' in the nameless expressions. In the
unsigned case there is no instruction supporting immediate values, and therefore a difference
exists in the constraint field between the two cases, and reloading must occur when operating with
immediate operands in the unsigned case.

In the output template we also handle things a bit differently from, e.g. the arithmetic approach.
We must first push the operand as usual, then perform the compare, which in the unsigned case is
done with the help of th&&€MPUinstruction, and then clean up the stack. However, the stack
cleaning can be postponed and put into one of the delay slots of the following conditional branch.
The branch pattern must in some way be informed of this, and therefore we have invented a flag
called thor_compare_need_stack adjust " that will be set in these patterns. It is only

the compare patterns that need this stack cleanindB@Sinstruction), the test patterns,

which are followed by the same kind of branch patterns, do not need any stack adjustments.

3.3.3.7 Control transfer instructions

In our implementation we support three different groups of standard names. The first group are
the ‘call ’ patterns which are, of course, constructed when the compiler detects a function call in
the C source code and next are fbhiep ’- and 'bXX'-patterns (XX stands for two letters) which

1. When we refer to the word 'branch’ we mean the entire set of conditional branch instructions included in
the instruction set. The same convention is used with the word 'compare’.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag69

are matched in almost every other situation when a change of the program counter is needed. The
last pattern is a very special standard name used for representisgitbk * ’ construct in C.

3.3.3.71 Calls

In our thor.md ’-file we support four different standard names to handle different call situa-
tions. These are callectdll ’,’call_value ', ’'call_pop 'and'call_value pop .The
meaning of call ’is a subroutine call instruction returning no value. Operand O is the function

to call; operand 1 is the number of bytes of arguments pushed; operand 2 is the number of regis-
ters used as operandsalfl_value ’is a subroutine call pattern returning a value. Operand O is
the hard register in which the value is returned. There are three more operands, the same as the
three operands of thedll ’-instruction (but with numbers increased by oneall pop ’and
call_value_pop ’aresimilartotall 'and ’call_value ’, except used if defined and if
"RETURN_POPS_ARGS non-zero. They should emit pdrallel ’-expression that contains

both the function call and aét ’ to indicate the adjustment made to the stack pointer. For
machines whereRETURN_POPS_ARG&n be non-zero, the use of these patterns increases the
number of functions for which the frame pointer can be eliminated.

All standard names have two constraint options, one for the usual call implemented by emitting a
"CALL instruction followed by twoNOP (due to the delay slots), and one for indirect call where

a C function, dutput_indirect_call ', is called. The basic idea when performing an indi-

rect call, is to pop the address lying on the top-of-stack to the program counter. Two things to keep
in mind are first that thd?OP PC-instruction, as well as other control transfer instructions, has
two delay slots, and second that the program counter is a half-word pointer, since there are both
short and full-word instructions. Therefore we perform a shift-left operation on the indirect
address inTOP in order to get a half-word address.

The ‘call_value ’-pattern demands aMTOSinstruction after the call to clean up the stack,
and due to this problem there is a special peephole pattern defined to matcMf@®&ristruc-
tion is succeeded by anoth&TOSinstructions gee 3.3.5.1, Machine-specific peephole optimi-
zations.

3.3.3.7.2 Branches

In Thor, as well as most other machines, there exist two kinds of branching instructions: one for
absolute PC-relative jumps and set of instructions handling branches when a condition has to be
true to get permission to jump.

The set of conditional branches does not include any corresponding unsigned variants. Instead the
architecture serve us with an unsigned compare instruction that sefCthegister, assuming

the test occurred with unsigned integesse(3.3.3.6, Condition code setting instructjoirs

GNU CC one must include the unsigned conditional branch standard namesnmdth&lé, oth-

erwise the compiler will not build. But in our case we output the same branch instruction in both
cases and delegate the responsibility to earlier pattempdi '/’ cmpqf) for generating the

correct version of the compare instruction.

The unconditional jump instruction]R’ (Jump Relative), is pretty straight forward to imple-
ment, and we have chosen to have the standard pame ”as a define_insn ' that directly
outputs the assembler. The arrthor_top_offset_at "is also updated here, by storing the

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag70

offset thor_top_offset " in the array indexed by the jump target’s internal number in the
compiler. In principle this number is the number of preceding basic blocks in the entire program
flow.

The solution for the conditional branches is to hawdeéine_expand ’-expression for each

and every standard name (including unsigned variants), and just letting the template flow through
changing nothing whatsoever. Then we have a mutual nameless pattern appropriate for any exist-
ing conditional branch RTL. This pattern calls a C function which decides what kind of branch it
has received and outputs a suitable assembler string. This function also updates the array
"thor_top_offset_at "in the same way as for the unconditional case. If the branch was pre-
ceded by aCMP-instruction one must insert stack adjusting code in the branch’s delay slot. Since
we have invented a suitable flag in the compare patterns which is set when pushing occurs, we
only check its value to determine if stack adjusting is needed, MI@S 1 or "MTOS 2 in

one of the delay slots. If not so, tWwdOP-instructions are output.

The unconditionalJR’ instruction of course has two delay slots too, but we let the GNU CC’s
delayed branch facilities handle the filling of thosee(3.3.5.2, Delay slot fillipnglf it finds inde-
pendent instructions in association with the jump, the compiler rearranges the code and moves
two of those into the jump’s slots, and if this succeeds no loss in terms of program execution
occurs due to the unnecessary instructions. In the conditional jump’s case we found it very hard to
make use of this facility due to incompatibility between the semantics of MR tegister and

GNU CC, and possible bugs in the GNU CC's source code.

Since we are always able to fill one of the delay slots (in the conditional jump case) we did not
make a true effort to make the GNU CC'’s delay slot filling algorithms work, further on we do not
think there are so many occasions where the second delay slot can in fact be filled.

3.3.3.7.3 The 'casesi ’'standard name

There is a standard nan@sesi ’ designed to construct a dispatch table, including bounds
checks. If the programmer writesswitch ’-statement in C the compiler can make use of this
pattern if it makes a significant improvement (faster code).

If the 'switch ’-statement is very sparse, i.e. the entries are located far away from each other, the
cost of implementing the statement as a dispatch table can be quite large (a lot of unused entries
taking code space), in this situation the compiler may choose to implemeswitoh’ ' state-

ment as a branch-tree instead.

This pattern takes five operands:

1) The index to dispatch on, which originally had mo8&riode . We found our-
selves forced to make a patch in the source e 3.3.6, Changes in the
source files of GNU CQo change this hard-coded mode@rhode’, since in
our strategy theQIl’-mode equals the word-size.

2) The lower bound for indices in the table, an integer constant.

3) The total range of indices in the table, the largest index minus the smallest one
(both inclusive).

4) A label that precedes the table itself.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag71

5) A label to jump to if the index has a value outside the bounds. (If the machine-
description macrocCASE_DROPS_THROUGHefined, then an out-of-bounds
index drops through to the code following the jump table instead of jumping to
this label. In that case, this label is not actually used bycHs®si ’-instruc-
tion, but it is always provided as an operand.)

The number of elements in the table is one plus the difference between the upper bound and the
lower bound.

Most of the work in this pattern is made in a C help function, but some things in the pattern are
worth noticing. The pattern has three constraints handling the cases when the index operand has
different addressing modes: immediate, stack- or PC-relative inclubig-references, and a
complex operand. The functioadtput_casesi ' does the rest of the job including range
checking, outputting of a compare instruction, and the indirect jump via the table. A total of 13
instructions is emitted from this pattern, not counting the dispatch table entries.

3.34 Attributes

We have chosen to have four attributes to help us dealing with additional features in the compiler.
The names of the attributes are in tutypé ’, ’length ’, ok for_delay_slot "and cc’.

The first attribute does not do anything useful by itself, since all it does is to put a label on what
class of patterns a particular pattern belongs to. Say, if the pattern performs some sort of arithme-
tic operation the type-attributarith ' is set. Thelength ’-attribute tells how many assem-
bler-instructions are emitted from each pattern. Dhefor_delay_slot "-attribute tests if a

pattern is suitable for inserting into a delay slot in terms of belonging to an allowed class and that
the number of instructions the pattern represents does not exceed a limit. Finatly,the ’

attribute returns a string which represents certain actions to be taken in the macro
"NOTICE_UPDATE_CCThis macro essentially decodes a pattern, and if necessary, updates the
global structurecc_status ’ which contains information on how flags in the condition code
register are set.

3.3.5 Optimizing the code

Most optimizations GNU CC performs are independent of the target, and thus remain unaltered
among the various existing ports of GNU CC. Optimizations belonging to this category are all

loop optimizations, constant propagation, instruction combination, strength reduction, deletion of
unused code etc. Unfortunately, some common code enhancing operations must be expressed in a
machine dependent fashion, since some of them depend on the hardwase@s&l3 6.2, Delay

slot filling). One of the most used techniques to enhance pedpholesmust also be handled

target dependently. GNU CC has developed ways to describe these optimizations, usually in the
".md’-file. Each of the following sections will discuss implemented techniques for code enhance-
ment in the Thor port.

3.35.1 Machine-specific peephole optimizations

Peephole optimizations are by far the most common code enhancing action existing in compilers
today. This is due to the fact that the possible optimizations themselves are fairly easily detected
and the gains obtained by them are usually quite large. The idea is to recognize special instruction

Document No: TOR/TNT/0028/SE

Date:4 December 1995 Issuel

Pag72

sequences being generated, and replace (alternatively remove) the sequence by another, more effi-
cient, one. The possible peepholes can be expressed rather directlynmdthlée, using a syn-
"-patterns gee 2.2.4.1, The Machine Description file, *.md’}Hile

tax resemblingdefine_insn

The most frequently used peephole in programs for Thor occurs when a sequence doing storing
and loading (or loading and storing) from the same stack slot is generated. Such a sequence can be
removed right away since the program’s semantics remains the same. Other peepholes recognize
far more complicated instruction sequences, and replace them with an equivalent and shorter
sequence. Here follows a table which covers all instruction sequences we recognize and modify.

Table 8 Peepholes implemented on the Thor port

e

ne
il
f

Seque_nce New Sequence Comment
recognized

PSH Loc A 'PSH followed by a POP to the same

POP Loc location/register. Both instructions are
removed.

POP Loc Same sequence as above but the order is

PUSH Loc switched. Both instructions are removed. T}
'Loc’ reference must here be temporary, i.€.
the pseudo register must die.

PSHR TOS PSHR TOS When the address of a specific position in t

ADDI Vall ADDI Sum stack is needed, a frame pointer reference

ADDI 1 be generated in the RTL. After elimination g

POP Loc the frame pointer the sequence will contain

PUSH Loc several instruction which can be combined.

ADDI Val2 ’Sumi in second column is equal to
'Vall+Val2+1 ’. The 'POP/ PUSH pair is
removed.

PSHR TOS PSHR TOS Another case not covered by the previous

ADDI Val ADDI Sum peephole.Sumi in second column is equal tg

ADDI 1 "Val+1 .

PSH Refl PSH Ref4 If a simple PSH instruction is located previ-

PSH Ref2 MTOS 1 ous to aPOPXinstruction, the PSH can be

MTOS 1 PSH Refl moved into the delay slot of thBOPX

NOP POPX Ref3 "Ref4 ' in second column is equal tRef2’

POPX Ref3 incremented with one, if it is a stack referen

POP Loc MTOS 1 A 'POP followed by an PSHX (indirect

PSH Loc NOP push) can be simplified if th®OP location is

MTOS 1 PSHX Ref used as the address in tiROPXinstruction.

NOP The location must be temporary, i.e. the

PSHX Ref pseudo register must die.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag73

Table 8 Peepholes implemented on the Thor port

Sequgnce New Sequence Comment
recognized
POP Loc CMP A 'POP instruction followed by aCMP
PSH Loc instruction, where thePOP refer to the same
CMP Ref temporary location as the fir®2SH of the
"CMP. In this case thePOP/’ PSH pair can
be removed.
POP Locl TEST Loc2 A simple POP followed by a TEST and a
TEST Loc2 JRXX conditional jump can often be simplified.
JRXX POP Locl Sometimes theTEST may even be omitted,
NOP NOP if the condition code register is already set gor-
NOP rectly.
CALL fun CALL fun Peephole sequence duetall_value
NOP NOP pattern. Size2 ' in the second column is
NOP NOP equal to Sizel - 1
POP x POP x
MTOS -1 MTOS Size2
MTOS Sizel

If more direct information of the implementation is desired we recommend the reader to consult
the last part of thehor.md ’-file listing, found in theAPPENDIX A - ’Listing of machine
dependent filegartA.1, where all thedefine_peep ’-patterns are found.

3.3.5.2 Delay slot filling

Every control transfer instruction in the instruction set has two delay slots to be filled with either
no-operation instructions or independent ones taken from the destination or a place prior to this
instruction. We fill some of the control transfer instructions manually since the same sequences of
instructions always occur. This is the case concer@dd.L, ' RET and conditional jump-

instructions ¢ee 3.3.3.7, Control transfer instructignso the only ones left to be handled are the
unconditional jumps.

There is a tool in GNU CC calledéfine_delay ’, which should assist when trying to fill the
slots with something usefusée 2.2.4.1, The Machine Description file, .md}fil#e use this

tool when handling the delay slots of ti&’-instruction. The define_delay ’-attribute uses

the attribute 0k_for_delay_slot " (see 3.3.4, Attribut@svhen verifying if an instruction is

legal to insert in a delay slot. The compiler then tries to find preceding instructions or instructions
from the jump target satisfying the predicate, and if it does not sudg@dihstructions will be
inserted after the jump. The macRRINT_OPERANDSs responsible for checking if the com-

piler has filled the slots, and if not emMOP instructions instead.

Unfortunately we have found some bugs in GNU CC when dealing witki¢fiee delay -
attributes. It seems that when using this facility on two delay slots we are out on untested territory,
none of the earlier ports have ever used this feature on more than one delay slot. We were forced
to make a patch in the source code due to the Isegs3(3.6, Changes in the source files of GNU
CO).

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag74

3.3.5.3 Removal of unnecessary test/compare instructions

When compiling with optimizing flags activated, the compiler scans the program to remove
unnecessarylEST-instructions. Since the compiler knows at every point in the program how

the flags in the condition code register is set, sArEST-instructions may be redundant if the

tested word has already set tR&-register earlier in the program, and no instructions have influ-
enced it since. A simple example of this is when a word is pushed on the stack, popped back to the
destination, and then immediately followed by a test-instruction (referring to the same location as
the previous push or pop). In this case the test is redundant since pushing the stack also sets the
condition code. But if theCC-register is not set appropriately the compiler cannot remove the

test.

How each pattern affect th€C-register is determined by thec "-attribute in association with
the macroNOTICE_UPDATE_CQsee 3.3.4, Attributes and 3.3.2.7, Condition chdes

3.3.6 Changes in the source files of GNU CC

When we first started with this project we had as a goal that we should avoid any changes in the
source code as much as possible, because each alteration in the source code makes the compiler
more incompatible with future releases of GNU CC. A port totally free of changes in the GNU

CC source code would mean that one continuously could update the compiler to the latest GNU
CC release and benefit from all improvements and bug fixes in these versions. This goal soon
proved to be unreachable due to many causes. First, we discovered some pure bugs in the source
code that would had been impossible to leave unfixed. Second, we encountered some difficulties
due to GNU CC'’s preferences for registers which also required source alterations. Finally, our
semantics of theTMP register seems not to go along with GNU CC’s way of workseg (3.2,

Strategy.

We felt compelled to make a total of ten changes in GNU CC'’s source code, none of these consid-
ered superfluous. In order to make it easier for the interested reader to find the exact locations of
these fixes we have produced Hiffes between the changed files and the original ones. These

diff files are listed iMAPPENDIX B - 'Diff files of the changes in GNU CC sourd&e following

two sections will thoroughly describe the changes and our intentions with them. In almost every
alteration we have done, we have used the convention to introduce a new macro that is tested in
the source with the preprocessor constriidtlef ’, and if the macro is defined an altered

sequence of C statements are executed. The line references in the text refer to the modified source
files. These new macros all start with the character sequEHER ’, in order to simplify detec-

tion of the changes. The macros are defined in thdHibe.h . In this way, one can use the

altered source files to build a compiler for yet another target, since none of the macros are defined
for the other possible target machines.

3.3.6.1 Bugs

This section convey, in our opinion, faulty programming from the people responsible for GNU
CC.

1. All UNIX systems are equipped with a commadif’ ', which produces a list of all inequalities between
two text files.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag75

1)

2)

3)

4)

In the file Yeload.c ’ (function ’find_reloads_address ', line

4353): We have introduced a new macro
'"THOR_RELOAD_CHECK_FOR_CON@$His macro enables code to
correct a problem withsubst_reg_equivs . This function replaces
pseudo-registers with an equivalent constant expression. We found that the
result in some special cases can b@aUS (SYMBOL_REF,

CONST_INT)) ’-expression without theCONSTin front of it. Function
'find_reloads_address " tries to correct invalid addresses in many
ways, but fails to correct this case. The code added finds these cases and
corrects them by adding @ONSTconstructor in front of the RTL-
expressions. Without this patch the compiler will crash once in a while.

In the file stmt.c ' (function 'expand_end_case ’, line 4891): When

using standard RTL-namedsesi ' we are tied to useSimode’ as

machine mode for an operand in the RTL-expression. Since we always use
'Qlmode’ as a standard mode in Thor we are forced to make the compiler
use QImode’ when compiling for Thor. We have introduced the new
macro THOR_CASESI_QIMODHn order to select the right mode to

use. We believe that this hard coded machine mode might come to irritate
other people in their porting tries if they are working with machines differ-
ing form the intended ones (32 bit and byte addressable).

In the file Yeorg.c ’ (function 'update_block ’, line 2241): In Thor

we have two delay slots for every flow-control instruction, and we use the
GNU CC featuredefine_delay ’in order to fill these delay slots when
doing an unconditional jump (for conditional branches and calls we found
it very hard to usedefine_delay ' since GNU CC cannot keep track of
how the stack-pointer changes when performing eager delay slot filling).
Here we have found a possible bug in GNU CC when using two delay
slots. Functionudpdate _block ' could be called with a second argument
"where ’ that points at an instruction which has been deleted. Therefore
the compiler will crash once in a while, whermpdate block ’ calls
"emit_insn_before "which in turn calls &dd_insn_before '

which fails when given a pointer to a deleted instruction. We suppose that
we are the first to suffer from this bug since it is very rare that a machine
has two delay slots. In order to avoid this bug we have changed the direct
call to 'emit_insn_before "in "update_block ’to call

'emit_insn_after " whenever the parameterhere ’ contains a

pointer to a deleted instruction. We do not think this patch will interfere
with any of the other actions GNU CC makes. We have invented a new
macro THOR_DELAY_SLOT_FIXto control the change.

In the file function.c ~ ’ (function "fixup_var_refs 1 ', line 1937

and 1986): Here we have found a rather serious bug that will affect every
port available, not only ours. In the source code an assignment to the vari-
able X’ occurs with the value given by the functimirigle_set ’

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag76

Originally the function is called with the parameteATTERN (insn) ’,
where PATTERNIs a macro designed to work on variables of type
"rtx . If you study the definition of functiorfixup_var_refs_1 ’
you will be soon convinced that the call to the function should be with the
variable insn ’ solely, not with the surrounding macro. We have defined a
macro THOR_FIXUP_VAR_REFS ’lthat will modify the two function
calls on line 1937 and 1986. The bug is only apparent when optimizing,

since the functionfixup_var_refs_1 "is used only in that case. C
programs suffering from the bug look like the example givdexiample
16.
main()
{ .
Int a;
a=3;
fun(&a);
}

Example 16 Program activating the bug in filefunction.c

If you have an auto variable that you use as a destination target in an
assignment and later in the code you take the address of this variable, the
incorrect call to functionsingle_set ' is issued. There might be other

C code sequences that suffer from the bug, but this is how we first found
the bug. The effect of the bug, in the example given, is that an extra reload
via a pseudo register is generated. The funcsomgle_set ' will

always return false, and the compiler gets uncertain about what it dares to
do with the variable. Therefore the compiler will unnecessarily copy the
variable’s address once more to a pseudo register, which in our case will be
translated to a stack slot. We believe that the Thor port suffers more from
the bug than most of the others due to the lack of registers.

3.3.6.2 Thor adaptations

This sections deals with the source code alterations made to enhance code quality for our port to
Thor. One could build the compiler without some of them, but certain strange behaviour may then

arise.

1) Inthe file 'stmt.c ' (function 'expand_end_case ’, line 4784): A new
macro THOR_CASE_VALUES SPARSENESBSs been introduced. Itis
now used instead of the value 10 when making the choice between a jump-
table and a branch-tree. The macro gives a limit for the sparseness in the
jump table. For example, if we have 8 different cases and
"THOR_CASE_VALUES SPARSENES8&uals 10, we will permit jump-
tables with a maximum of 80 entries, before choosing a branch-tree. We

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag77

considered, after some calculations, that a value of 4 would be more suita-
ble for Thor than the old hard coded value.

2) Inthe file reloadl.c '’ (functioninit_reload ', line 386): When the
compiler wants to find out how many indirect spill levels that are allowed,
it checks how manymemlevels that are allowed with an RTX containing
a register number equal tbAST_VIRTUAL_REGISTER + 1. For Thor
this will not work, therefore we have introduced a new macro named
"THOR_HARD_FRAME_POINTER_INIT_RELOADhis macro con-
trols, when compiling for Thor, that the register number
"HARD_FRAME_POINTER_REGNIi#Mised instead.

3) In the file jump.c ’ (function jump_optimize ’, line 437): The
jump2-pass is performing various reorganizations of jump/branch instruc-
tions and their labels when compiling with optimizations. While doing this
it will remove death-note information about variables and this is desirable
when compiling for most machines. For Thor this removal of death infor-
mation will strongly reduce the number of peephole optimizations that can
be done. Therefore we have introduced a new macro called
"THOR_PRESERVE_DEATH_INFO_REGNOQwch is inspired by the
now obsolete macrd®RESERVE_DEATH_INFO_REGNO uBed by
Intel's 80x86 port. First we tried to awaken the latter macro but it was
impossible to build the compiler since the code enabled by the macro did
not work any more, so we introduced this new macro with the same func-
tionality as the old one and replaced its occurrences in theufig.c ",
but only here since it was only the effect of preserving death information
marks we desired. We can now more efficiently make use of our peephole
optimizations.

4) In the file function.c ’ (function 'assign_parms ’, line 3583):
When entering a function there is a high possibility that GNU CC wants to
do a copy of all parameters to registers. In Thor’s case this will result in
very inefficient code since there are no registers in the machine. All the
copy instructions will therefore be redundant and undesired. We have
inhibited this behaviour by introducing a new macro named
"THOR_NO_INITIAL_REG directly tied to 1, and inserting it into the
'if ’-statement on line 3583. The result of this is that no initial copy
instructions will be inserted in the beginning of a function.

5) In the file tonfigure '’ (line 2274) config.sub ’ (line 135): We have
added a targethor ’to be able to configure and build a cross-compiler
for Thor. These files are used when the compiler is built and all the possi-
ble target machines are listed in them. Since our port is not included in the
official GNU CC release, we were forced to make this patch.

3.3.7 Auxiliary files in the compiler environment

These following sections discuss files in the compiler environment necessary for the compiler to

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag78

build or work correctly. All files mentioned in these sections are list&dPPENDIX A - 'Listing
of machine dependent files’

3.3.7.1 The 'crt0.asm ' file

This file is necessary when linking object files in order to get an executable file. The file contains
start-up information concerning, for example, initial values of the top of stack pointer and the pro-
gram counter. The script and make files used when building the compiler compiles the

‘crt0.asm '’ file itself in the latter stages in the building process in order to get an object file.
This object file is in turn used by the linker each time one links a program. The programmer does
not need to bother about this file while developing software, since it is implicitly linked to the
executable file.

3.3.7.2 The 'thor-libgccl.asm ' file

When programming in C it is pretty usual that one uses the unsigned variants of the available
types, and since the Thor processor does not directly support, for example, division with unsigned
integers, the compiler must solve this problem in some other way. GNU CC'’s approach to this
problem is to allow the designers of the compiler to define implicit library functions handling
these operations. With the word “implicit” we mean that the programmer cannot access these
functions directl&, only the compiler can generate calls to the functions if it detects that a certain
operation is not supported by the architecture. GNU CC has defined numerous implicit library
functions which covers the most frequently desired operations. If the compiler wants to perform
an unsigned division it just calls the corresponding function which is supposed to perform the
computation for the compiler. These functions are written directly in target machine assembler,
and like the previous file it is compiled during the building phase of the compiler and the pro-
duced object file is then used by the linker when necessary.

Table 9 Implicit library functions

Function Explanation

___udivqi3 An unsigned 32-bit division. Divides the numerator by the denominator and returns the
unsigned result. A C function prototype would look like this:
unsigned int

__udivgi3(unsigned int numerator, unsigned int denominator)

____umodgqi3 An unsigned 32-bit modulo. Calculates the mofifdlom the numerator and the denom-
inator with the help of*__udivqgi3 ’'and returns the result. A C function prototype
would look like this:

unsigned int

__umodqi3 (unsigned int nominator, unsigned int denominator)

a. The modulo defined by: mod (a,b) =a-(aDIVb)*b

1. This is not entirely true since the programmer may call, for example, the externally defined function,
'__udivgi3 ' (two underscores in the beginning of the name), and when the compiler outputs assembler
code for the program it appends an extrdr the beginning of the function’s name. In the produced assem-
bler code there now exists a call to a function 'udivgi3 ' and since this is the exact name of one of the
implicit library routines the linker is able to resolve this external reference. Observe that this is not the rec-
ommended way of programming.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag79

For Thor we currently support two implicit library functions, as seérabie 9.
3.3.7.3 The 'as’ and ’ld ’ script files

Unfortunately one is not able to easily select the name of the assembler and the linker which one
desires to use, since the useasf”and 'Id '* are hard-coded in GNU CC's source. Since we are
developing a cross-compiler we naturally cannot aséand 'ld *. The assembler we utilize is
invoked by the comman@ssemble ’ and the linker bylink ’*.We have discovered that other

ports not using the UNIX assembler/linker have solved this problem by overriding the command
names and writing scripts with the same names as the UNIX assembler/linker, and this also turned
out to be the strategy we decided to follow. One tricky part of solving the problem in a manner
like this is to make all options to the compiler to work along with the assembler/linker, for exam-
ple the UNIX assembler/linker does not use the same characters as options as our assembler/
linker. Moreover, the assembler file suffix, used in UNIX systerss,is hard-coded in GNU

CC'’s source code, and this raise trouble since the Thor assembler uses thasoffixThe

script files are also responsible to place the object files in the directories where the assembler and
linker take for granted to find them. All these problems, and more, are solved in these script files,
and as script files in common these turned out to be quite hairy to read.

One should observe that there exists a possibility to pass options directly to the assembler when
compiling, by using the optionWa,OPTION’, where OPTION stands for an arbitrary number

of options separated by commas, so if the programmer wants to access a special feature in the
assembler this is always possible, even if GNU CC does not have an appropriate corresponding
option. There also exists a similar option for passing options to the lifkér,OPTION

which works exactly as the flagh/a’.

3.3.74 The 't-thor 'file

This file contains extra rules and information to the makefile of GNU RM@&kgfile.in .
Additional paths and directory names used by the Thor assembler and linker are also included in
this file.

3.4 Outcome

In these sections we critically discuss how far we reached in developing the compiler, and we
investigate the quality of the code generated.

The main thing to observe is the fact that the compiler seems to work properly. When given a C
source program, it outputs a correct assembler file. However, if one studies the assembler code a
little closer and tries to estimate how well it compiles a program, one discovers some things that
might have been done in a better way. The main reason for this non-optimal code is GNU CC’s
preference for registers, which will be dealt with in the first section below.

We will also make a comparison with an Ada compiler that is specially designed for Thor.
3.4.1 GNU CC's preference for registers

When compiling programs with our port of GNU CC one notices once in a while that the compiler
delivers code which contains unnecessary copy instructions, especially when compiling with opti-

1. These are the names of the standard UNIX assembler and linker.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag80

mizing options. This behaviour is due to the fact that GNU CC is designed for register machines,
and thus not very suitable for stack machines like Thor.

The compiler seems to think that significant gains are made if data are kept in registers as much as
possible. This behaviour is more obvious when optimizing. Even though there are ways to access
data by indirect addressing, the compiler prefers to reload the data via registers. We find this dis-
crimination of the other possible addressing modes a little bit peculiar, since even in a register
machine there exists a limit when no gains are made by reloading data to register, for example if
the data word is only used once.

On Thor the drawbacks of this uncontrolled preference for registers are obvious since there are no
registers in the architecture. The register preferences cause unnecessary stack slots to be allocated
in certain programs, where data swapping then occurs. Some of the data moves can be removed,
thanks to the peephole optimizations, but most of them are impossible to influence. Since this
behaviour is heavily encouraged in optimized mode, this can cause some unexpected results,
making the unoptimized version of a program faster than the optimized one. These situations
occur, for example when calling a function with reference parameters. The compiler can manage
with almost no extra stack slots thanks to the use of indirect addressing, which on Thor is abso-
lutely the smartest way of producing code. Unfortunately the compiler will allocate more stack
slots when optimizing the code, in examples like that. The following example will show a typical

C code sequence where this stupid behaviour is most apparent:

void fun(a,b,c)
int *a,*b,*c;
{

}Fﬂzﬁm*ﬁﬁ

main()
{
int a,b,c;
fun(&a,&b,&c);
}

Example 17 Troublesome C code when optimizing

The function fun * in the example above, uses reference parameters which are handled with indi-
rect addressing pretty straight forward when compiling unoptimized. Here follows the assembler
extract (unoptimized) of the functiofuh .

fun:
MTOS -2 ; local vars(1) + TOP reg(1)
PSH 5 : S+5
MTOS 1
NOP
PSHX 0
POP 2 ; S+1

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag81

PSH 4 : S+4
MTOS 1
NOP
PSHX 0
MUL 2 : S+1
PSH4 ;S+3
MTOS 1
NOP
POPX 0
L1:
RET 2
POP 6 ; copy TOP-reg to callers TOP-reg
MTOS 5 ;local vars(1) + 1 + pop_args(3)

DATA O ; align function

Example 18 Unoptimized assembler extract
When compiling the same C program with optimizing the following code is produced.

fun:
MTOS -6 ; local vars(5) + TOP reg(1)
PSH 7 . S+7
POP6 ;S+5
PSH8 ;S+8
POP 5 . S+4
PSH9 ;S+9
; PEEP - pop,push base address (dead)
MTOS 1
NOP
PSHX 0
POP 2 : S+1
PSH4 ;S+4
MTOS 1
NOP
PSHX 0
MUL2 ;S+1
; PEEP - pop,push (dead)
PSH6 ;S+5
MTOS 1
NOP
POPX 0
RET 6

POP 10 ; copy TOP-reg to callers TOP-reg
MTOS 9 ;local vars(5) + 1 + pop_args(3)

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag82

DATA O ; align function

Example 19 Optimized assembler extract
When comparing the two versions of the functifum’’, certain things are worth pointing out:

» The optimized version utilizes five stack slots compared to only one in the unop-
timized case.

* A total of 23 instructions is produced in the optimized version compared to only
19 in the unoptimized case, despite the fact that the optimized program suc-
ceeded in removing two pairs of unnecessary push/pop pairs.

» The additional four instructions in the optimized version are redundant since all
they do are to move data from one stack slot to another. Both versions use the
same addressing mode, i.e. indirect addressing, so no difference exists between
the two versions in terms of accessing data.

Now is seems that compiling with optimizing is totally useless, but this is not true. The optimizing
stages do a lot of good work, but in this little example it is not apparent since the program is writ-
ten to show the worst possible case. The example shown is the only case where both waste of
instructions and program space can occur in such obvious way. Unfortunately we believe that the
problem is hard to solve without severe changes in GNU CC'’s source.

The code may have been even worse in the optimized case without a small change we have done
in the source filessee 3.3.6, Changes in the source files of GN) Tlils patch suppresses that

the compiler copwll the arguments to registers when entering a function regardless of the way

the parameters were passed. Without this patch all function entrances would have suffered the
same problem discussed in this section, not only the reference parameters.

3.4.2 Comparison with the Oden® Ada compiler

To further study the code quality we will show, in this section, a comparison we have made
between our compiler and the Oden Ada compiler. For both compilers we have compiled a code
sequence, DAIS (Digital Avionics Instruction Set), which is well-known among people working

in the space industry for giving a rather good sample of typical computations made in space borne
computer programs. You may consider the DAIS program as a kind of benchmark showing typi-
cal occurrences of instruction sequences common in systems, for example, in satellites. The pro-
gram essentially contains various kinds of arithmetic instructions, both integer and floating-point,
embedded inif ’-, 'for ’-, and 'switch ’-statements (C syntax).

In order to be able to compile the DAIS program on both compilers we had to translate a program
given to us, written in Ada, to C. That procedure raised no trouble since the program do not con-
tain any Ada specific constructs, just arithmetic. One slight difference between the Ada and the C
version is that the latter one contains a function call, taking every defined variable in the program
as arguments, as the very last thing in the program. We introduced this difference after studying a
compiled version not containing the function call. When the GNU CC compiler performs the glo-

1. The Oden Ada compiler is specially designed for Thor, for example it supports the built-in hardware in-
structions in Thor.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag83

bal flow analysis (only when optimizing) on the program it discovers that it can remove essential
parts of the program without any change in the semantics, since none of the variables are used
outside the program and no functions calls are included in the program. The Ada compiler on the
other hand does not perform such flow analysis, and thus a comparison between the programs
would have been meaningless. In order to obtain the most fair comparison possible, we therefore
added a function call, which uses all defined variables in the program, in the very last part of the C
program (do_not_delete_fun). Now, the flow analysis pass is not able to perform as much
deletion of unused code as before, since all variables are used in the program.

Here we give both source files, side by side:

#define TRUE 1
#define FALSE 0
void do_not_delete_fun ();

procedure DAIS is void main()

B1,B2,B3,B4:BOOLEAN; int B1,B2,B3,B4;
M1,M2,M3,M4,M5,M6,M7,M8:INTEGER; int M1,M2,M3,M4,M5,M6,M7,M8;
ILIR:INTEGER; int LIR;
R1,R2,R3,R4,R5,R6,R7,R8:FLOAT; float R1,R2,R3,R4,R5,R6,R7,R8;
K:FLOAT :=0.9999999; float K = 0.9999999;

begin
IR :=14;
if IR>75 then M1:=22; R1:=3.3; else M1:=33; R1:=2.2; end if;

~forTinI1.-32767 Toop~— ~— ~— ~— — — — — — — — —

case M1 is

IR =14;
if (IR > 75){M1 = 22; R1 = 3.3;} else {M1 = 33; R1 = 2.2;}
T for(r=L;T<=32767;+{ — ~— ~— — — — — — T T 7
switch (M1) {

when 77 => M1:=M1-60;
when others => M1:=M1+1;
end case;
M2:=M1*17;
M3:=M2/3+1;
case M3 is
when 284 => M4:=M3+7;
when others => M4:=M3+9;
~ endcase;
M5:=M4+13;
M6:=M5+19;
M7:=M6+M1+M2;
case M6 is
when 323 => M8:=M7*19;
when others => M8:=M1*23;
end case;
R1:=R1*K+K;
_ R2=RI0OL,
if K>0.999
then R3:=R1*K;B2:=TRUE;
else R3:=R2*K;B2:=FALSE;
end if;
if K>0.9999
then R4:=R2;B1:=FALSE;
else R4:=R3;B1:=TRUE;
end if;
R5:=R4+0.95;
_ RE6=RI*R2*R3*K+RS;
R7:=R1*K+0.96;
if K>0.99
then R8:=R5/K; K:=0.9999*K;B3:=B1 and B2; B4:=B1 or B2;
else R8:=R7/K; K:=1.001*K; B3:=B1 or B2; B4:=B1 and B2;

case 77: M1 = M1 - 60; break;
default: M1 =M1 + 1;}

M2 =M1 *17;

M3=M2/3+1;

switch (M3) {
case 284: M4 = M3 + 7; break;
default: M4 = M3 + 9;}

M5 = M4 + 13;

M6 = M5 + 19;

M7 = M6 + M1 + M2;

switch (M6) {
case 323: M8 = M7 * 19; break;
default: M8 = M1 * 23;}

R1=R1*K+K;
rR2=R1+09%,
if (K > 0.999)

{R3=R1*K; B2 = TRUE; }

else { R3 = R2 * K; B2 = FALSE;}

if (K > 0.9999)
{R4 = R2; B1 = FALSE}}
else {R4 = R3; B1 = TRUE;}

R5 = R4 + 0.95;
R6=R1*R2*R3*K+R5;, .
R7=R1*K +0.96;

if (K > 0.99)

{R8=R5/K; K =0.9999 * K;B3 = B1 & B2;B4 = B1 | B2;}

else {R8 = R7/K; K = 1.001 *K; B3 = B1 | B2;

end if; B4 =B1 & B2}
end loop; }
do_not_delete_fun (B1,B2,B3,B4,M1,M2,M3,M4,M5,M6,M7,M8,|,IR,
R1,R2,R3,R4,R5,R6,R7,R8,K);
end DAIS; }

Example 20 Comparison between Ada and C versions of DAIS

Below we give listings of the assembler extract of both the Ada and the C version, with the source
code given as comments. As per default, the Ada compiler performs various optimizations, and to
turn on optimization on GNU CC we must explicitly give such options while compgieg (

2.2.2.3, Optimizing optionsThe command line given in both cases are: For Adenpile -a

dais.ada ’and for C; thor-gcc -S -O dais.c ". The option *a ’ tells the Ada compiler

to deliver assembler code, and thus equivalent to opinfor GNU CC. Here comes both
assembler files with source code comments inserted:

Document No: TOR/TNT/0028/SE

Date:4 December 1995

Issuel

Pag84

-- procedure DAIS is
- B1,B2,B3,B4:BOOLEAN;

- M1,M2,M3,M4,M5,M6,M7 ,M8:INTEGER;

-- LIRINTEGER;

-- R1,R2,R3,R4,R5R6,R7,R8:FLOAT,;

- K:FLOAT :=0.9999999;
L3: MTOS -22
PSH L1
-- begin
- IR:=14;
PSHI 14
POP 10

-- if IR>75 then M1:=22; R1:=3.3; else M1:=33; R1:=2.2; end

PSH 9
CMPI 75
JRLE L7
MTOS 1
NOP
PSHI 22
POP 19
JR L8
PSH L5
POP 9
L7: PSHI 33
POP 19
PSH L9
POP 9
-- -- Start measuring here

-- forlinl..32767 loop
PSHI 1

-- case Mlis
PSH 19
- when 77 => M1:=M1-60;
CMPI 77
JRNE L14
NOP
NOP
PSH 20
JR L13
ADDI -60
POP 21
L14:
- when others => M1:=M1+1;
PSH 20
JR L13
ADDI 1
POP 21
L13:
- end case;
- M2:=M1*17;
PSH 20
MuLI 17
POP 20
- M3:=M2/3+1;
PSH 19
DIV L10
ADDI 1
POP 19
- case M3 is
PSH 18
- when 284 => M4:=M3+7;
CMPI 284
JRNE L17
NOP
NOP
PSH 19
JR L16
ADDI 7
POP 19

L17:

- when others => M4:=M3+9;
PSH 19
JR L16
ADDI 9
POP 19

L16:

- end case;
- M5:=M4+13;
PSH 18
ADDI 13
POP 18
- M6:=M5+19;
PSH 17

; void main()

code
LCO:

LC1:
LC2:
LC3:
LC4:
LC5:
LCé6:
LC7:
LCS8:
LC9:
_main

_main:
int B1,B2,B3,B4;

; Assembler file for Thor. Version 0.1.0
; Generated by thor-gcc.

_do_not_delete_funXREF

SECT 1,R,C

DATAF 9.9999988079e-01
DATAF 2.2000000477e+00
DATA 3

DATAF 9.1000000000e-01
DATAF 9.9900001287e-01
DATAF 9.9989998341e-01
DATAF 9.5000000000e-01
DATAF 9.6000000000e-01
DATAF 9.9000000954e-01

DATAF 1.0010000467e+00
XDEF

int M1,M2,M3,M4,M5 M6,M7,M8;
int LIR;

float R1,R2,R3,R4,R5,R6,R7,R8;
float K = 0.9999999;

MTOS -23 ; local vars(22) + TOP reg(1)
PSH LCO
POP 1 ; TOP
i IR=14;
; if(IR>75)
Rt
; M1 =22;
; R1=3.3;
v}
; else
Rt
; M1 =33;
H R1=2.2;
v}
PSHI 33
POP 19 ; S+18
PSH LC1
POP 10 ; S+9
; for (1=1; 1 <= 32767; 1++)
I
PSHI 1
POP 11 ; S+10
L7:
H switch (M1)
; {
; case 77:
; M1 = M1 - 60;
; break;
; default:
H M1=M1+1;
}
PSH 18 ; S+18
CMPI 77
JRNE L10
MTOS 1
NOP
JR L27
NOP
PSHI 17
L10:
PSH 18 ; S+18
ADDI 1
L27:
POP 19 ; S+18
H M2 =M1*17;
; M3=M2/3+1;
PSH 18 ; S+18
SL4
; PEEP - pop,push (dead)
ADD 19 ; S+18
POP 18 ; S+17
PSH 17 ; S+17

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag85
ADDI 19 DIV LC2
POP 17 ; PEEP - pop,push (dead)
- M7:=M6+M1+M2; ADDI 1
PSH 16 POP 17 ; S+16
ADD 22 H switch (M3)
ADD 21 ;
POP 16 ; case 284:
- case M6 is H M4 =M3+7,
PSH 16 ; break;
- when 323 => M8:=M7*19; ; default:
CMPI 323 N M4 =M3+9;
JRNE L19 H }
NOP PSH 16 ; S+16
NOP CMPI 284
PSH 16 JRNE L14
JR L18 MTOS 1
MULI 19 NOP
POP 16 JRL28
L19: NOP
- when others => M8:=M1*23; PSHI 291
PSH 22 L14:
JR L18 PSH 16 ; S+16
MULI 23 ADDI 9
POP 16 L28:
L18: POP 16 ; S+15
- end case; H M5 = M4 + 13;
- R1:=R1*K+K; ; M6 = M5 + 19;
PSH 12 H M7 = M6 + M1 + M2;
MULF 5 PSH 15 ; S+15
ADDF 5 ADDI 13
POP 13 POP 15 ; S+14
- R2:=R1+0.91; PSH 14 ; S+14
PSH 12 ADDI 19
ADDF L15 POP 14 ; S+13
POP 12 PSH 13 ; S+13
- if K>0.999 ADD 19 ; S+18
PSH 4 ; PEEP - pop,push (dead)
CMPF L20 ADD 18 ; S+17
JRLE L21 POP 13 ; S+12
MTOS 1 H switch (M6)
NOP ;
- then R3:=R1*K;B2:=TRUE; H case 323:
PSH 12 H M8 = M7 * 19;
MULF 5 H break;
POP 11 ; default:
JR L22 H M8 = M1 * 23;
PSHI 1 ; }
POP 26 PSH 13 ; S+13
L21: CMPI 323
-- else R3:=R2*K;B2:=FALSE; JRNE L18
PSH 11 MTOS 1
MULF 5 NOP
POP 11 JRL29
PSHI 0 PSH 12 ; S+12
POP 26 MULI 19
- end if; L18:
L22: PSH 18 ; S+18
- if K>0.9999 MULI 23
PSH 4 L29:
CMPF L23 POP 12 ; S+11
JRLE L24 ; R1=R1*K+K;
MTOS 1 ; R2 =R1+0.91;
NOP PSH 9 ; S+9
- then R4:=R2;B1:=FALSE; MULF 1 ; TOP
PSH 11 ; PEEP - pop,push (dead)
POP 10 ADDF 1 ; TOP
JR L25 POP 10 ; S+9
PSHI 0 PSH 9 ; S+9
POP 27 ADDF LC3
L24: POP 9 ; S+8
-- else R4:=R3;B1:=TRUE; ; if (K >0.999)
PSH 10 H
POP 10 ; R3=R1*K;
PSHI 1 H B2 = TRUE;
POP 27 H
- end if; ; else
L25: H
- R5:=R4+0.95; H R3=R2*K;
PSH 9 ; B2 = FALSE;
ADDF 126 ; }
POP 9 PSHO ; TOP
- R6:=R1*R2*R3*K+R5; CMPF LC4
PSH 12 JRLE L20
MULF 12 MTOS 1
MULF 11 NOP

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag86
MULF 5 PSH 9 ; S+9
ADDF 9 MULF 1 ; TOP
POP 8 JR L30

- R7:=R1*K+0.96; POP 8 3 S+7
PSH 12 PSHI 1
MULF 5 L20:
ADDF L27 PSH 8 ; S+8
POP 7 MULF 1 ; TOP
- if K>0.99 POP 8 1 S+7
PSH 4 PSHI 0
CMPF L28 L30:
JRLE L29 POP 22 ; S+21
MTOS 1 H if (K >0.9999)
NOP H {
-- then R8:=R5/K; K:=0.9999*K;B3:=B1 and B2; B4:=B1 or B2; H R4 =R2;
PSH 8 N B1 = FALSE;
DIVF 5 N
POP 6 ; else
PSH 4 H
MULF L23 H R4 =R3;
POP 5 H Bl =TRUE;
PSH 25 ; }
PSH 27 PSHO ; TOP
AND 1 CMPF LC5
POP 26 JRLE L22
PSH 26 MTOS 1
PSH 28 NOP
OR 1 PSH 8 ; S+8
JR L30 JRL31
POP 26 POP 7 ; S+6
MTOS 2 PSHI 0
L29: L22:
- else R8:=R7/K; K:=1.001*K; B3:=B1 or B2; B4:=B1 and PSH7) S+7
B2; POP 7 ; S+6
PSH 6 PSHI 1
DIVF 5 L31:
POP 6 POP 23 ; S+22
PSH 4 H R5 = R4 + 0.95;
MULF L31 N R6 =R1*R2*R3*K + R5;
POP 5 H R7 =R1*K + 0.96;
PSH 25 PSH 6 ; S+6
PSH 27 ADDF LC6
OR 1 POP 6 ; S+5
POP 26 PSH 9 ; S+9
PSH 26 MULF 9 ; S+8
PSH 28 ; PEEP - pop,push (dead)
AND 1 MULF 8 ; S+7
POP 26 ; PEEP - pop,push (dead)
MTOS 2 MULF 1 ; TOP
- end if; ; PEEP - pop,push (dead)
L30: ADDF 6 ; S+5
-- end loop; POP 5 ; S+4
PSH 3 PSH 9 ; S+9
CMPI 32767 MULF 1 ; TOP
JRLT L11 ; PEEP - pop,push (dead)
MTOS 4 ADDF LC7
ADDI 1 POP 4 ; S+3
L12: MTOS 1 H if (K> 0.99)
-- end DAIS; H
L4: RET 23 H R8=R5/K;
MTOS 24 ; K =0.9999 * K;
NOP ; B3 =B1&B2;

L33: ; B4 =B1|B2;

L1: DATAF 0.00000E-01

L5: DATAF 3.30000E+00 ; else

L9: DATAF 2.20000E+00 H {

L10: DATA 3 ; R8=R7/K;

L15: DATAF 9.10000E-01 H K=1.001*K;

L20: DATAF 9.99000E-01 ; B3=B1|B2;

L23: DATAF 9.99900E-01 N B4 =B1 &B2;

L26: DATAF 9.50000E-01 ; }

L27: DATAF 9.60000E-01 PSHO ; TOP

L28: DATAF 9.90000E-01 CMPF LC8

L31: DATAF 1.00100E+00 JRLE L24

L2: MTOS 1

L37: PSHI-1 NOP
PSH L32 PSH5 ; S+5
PSHR TOS DIVF 1 ; TOP

ADDI 1 POP 3 ;S+2

POPR ER PSH O ; TOP
PSH L38 MULF LC5

POPR TP POP 1 ; TOP
PSHI -1 PSH 22 ; S+22
POP 16 (TIB_SECTION) AND 22 ; S+21
PSH L39 POP 21 ; S+20

POP 17 (TIB_SECTION)

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag87
PSHI 32 JR L32
POP 18 (TIB_SECTION) PSH 22 ; S+22
PSH L39 OR 22 ; S+21
POP 19 (TIB_SECTION) L24:
PSHI 0 PSH 3 ; S+3
POP 20 (TIB_SECTION) DIVF 1 ; TOP
PSH L40 POP 3 ; S+2
POP 21 (TIB_SECTION) PSH O ; TOP
PSH L41 MULF LC9
POP 22 (TIB_SECTION) POP 1 ; TOP
PSH L42 PSH 22 ; S+22
POP 23 (TIB_SECTION) OR 22 ; S+21
PSHI 0 POP 21 ; S+20
PSHI 1 PSH 22 ; S+22
TREG AND 22 ; S+21
PSHI 1025 L32:
POPR TR POP 20 ; S+19
TSCH
L36: NOP PSH 10 ; S+10
NOP ADDI 1
NOP POP 11 ; S+10
JR L36 PSH 10 ; S+10
NOP CMPI 32767
NOP JRLE L7
L35: MTOS 1
CALL L3 NOP
NOP ; do_not_delete_fun (B1,B2,B3,B4,
NOP H M1,M2,M3,M4,M5,M6,M7,M8,
PSHI 0 LIR,
L34: CLRF 32 R1,R2,R3,R4,R5,R6,R7,R8,
NOP K);
NOP PSH O ; TOP
HLT PSH 3 ; S+2
NOP PSH 5 ; S+3
NOP PSH 7 ; S+4
NOP PSH 9 ; S+5
L32: DATA L34 PSH 11 ; S+6
L38: DATA 0 (TIB_SECTION) PSH 13) S+7
L39: DATA 40 (DATA_SECTION) PSH 15 ; S+8
L40: DATA L35 PSH 17 ; S+9
L41: DATA 0 (DATA_SECTION) PSHI 14
L42: DATA 42 (DATA_SECTION) PSH 20 ; S+10
PSH 22 ; S+11
PSH 24 ; S+12
PSH 26 ; S+13
PSH 28 ; S+14
PSH 30 ; S+15
PSH 32 ; S+16
PSH 34 ; S+17
PSH 36 ; S+18
PSH 38 ; S+19
PSH 40 ; S+20
PSH 42 ; S+21
PSH 44 ; S+22
CALL _do_not_delete_fun
NOP
NOP
RET 23

POP 24 ; copy TOP-reg to callers TOP-reg
MTOS 23 ; local vars(22) + 1 + pop_args(0)

Example 21 Comparison of Ada and C compilers

Certain things must be noticed about the assembler files:

» Everything after labell’2’ in the Ada assembler file could be neglected, since

that code takes care of the initialization of the Ada tasking features, supported by

the hardware in the Thor processor.
» The call to do_not_delete fun

"in the end of the C assembler file includ-
ing all the pushes of parameters, should be disregarded by reasons discussed

above. Observe that the absolute last three instructions should not be neglected,
since that is the return sequence of thaih ’ function.

* In the C version we used the bitwise operatd&sand '| ’, when we translated
the Ada operatorsahd’ and ‘or . If we had used operator&& and ’|| ’in

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag88

the C program, the generated assembler file would not have contained the assem-
bler instructions,AND and 'OR, but rather testing instructions for lazy evalua-
tion. On the other side the Ada version utilizes these assembler instructions
when generating code faand’ and 'or *. Thus Ada and C do have a different
interpretation for logic operators. Therefore we decided it would be more fair if
the C version uses the bitwise operator so that both assembler files are more
comparable to each other.

Both compilers seem to deliver good code at first sight, despite the differences in the assembler
layout between the two files. We have not had the energy to perform an in-depth investigation
finding out the superior compiler, but here comes some details we found interesting while study-
ing and comparing the two versions:

3.4.3

» Both compilers utilizes the same amount of stack slots, 23, reserved for local

variables in the program. Thus the Ada version reserves 22 slots with instruction
"MTOS and then it pushes a floating-point constant just after that. That behav-
iour is very smart, since compared to our compiler it makes use of one instruc-
tion less. We reserves 23 slots right away, then pushes the constant which we in
turn pop into one of the reserved slots.

The first if ' statement is a rather naive one, since the result of the test of varia-
ble 'IR’ could be determined in advance. GNU CC detects this and thus does not
perform any testing of variabléR ’ at all, it knows that the€lse ’ part will be
chosen. The Ada compiler does not perform such an analysis and is not able to
omit the testing ofIR ’. One can state that this is very stupid programming and
optimizations like this would never occur when programming normally, but nev-
ertheless the DAIS program is written is this fashion.

The Ada compiler adds up all pushes done and keeps track of the stack-depth at
every place in the program. This makes it possible to postpone the cleaning up of
some of the temporary values pushed on the stack, until the end, where a final
"MTOSinstruction takes care of all the cleaning. In the C compiler we always
clean up temporary values as soon as possible, often in a delay slot of a follow-
ing branch instruction, since we do not have a complete trace of the stack-depth
at every place in the program. However, the comparison made shows that, in this
case, it does not matter so much. The Ada compiler does not gain so much by
using this approach, since we place the cleaning instruction in a delay slot, which
is otherwise unused. But in the long run, the Ada compiler approach probably
wins.

Interesting details

In this section we point out certain behaviours about our GNU CC port, good or bad things, that
we have discovered while studying the produced code.

1. Lazy evaluation generally means that no value is computed until it is in fact needed. In this case it means
that if the first expression in ar '-expression is true, the next expression is never evaluated, since it would
not influence the outcome of ther”’-expression.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag89

» The delay-slot filling of the unconditional jumps finally seems to work quite
well, despite all the trouble about our changed semantics and bugs in the GNU
CC'’s source code we have encountered. Maybe some possible delay-slot fillings
are now rejected, but we think those cases are quite rare. The delay-slot filling of
the conditional jumps does not use any of the GNU CC'’s built-in algorithms for
selecting appropriate instructions to insert, and as a result of this one delay-slot
always remains empty. Thus it is a pity we did not find a suitable way to make
use of these algorithms, we do not think that it is an easy task to make the algo-
rithms work along with our strategy.

* When one compares assembler files compiled with the optimize oglign’
with versions compiled with the optior02’ (same source code as wit®”),
the number of reserved stack slots seem to be a little higher in the latter version.
We estimated the increase could be as high as 20% in the worst case. This behav-
iour is due to the GNU CC'’s preference for register discussed in s8ctidn
and the more the compiler is told to optimize the more anxious it gets to use reg-
isters. We do not think that this desire for registers can be easily suppressed with-
out severe alterations in the source code. Even though the reserved number of
stack slots may be a little higher in th®’ version, one should not forget that it
does many other more fruitful optimizations as well. Generally, we think that
small functions suffer more from this problem than larger ones, since a large
function gives the compiler more space for it's code transformations.

» The unoptimized version of a program sometimes contains a large number of
unnecessary data moves and other peculiar things that at first sight appear to be
redundant. This is partly due to our chosen strategy, which makes the compiler
generate code with lot oPSH and 'POP instructions. On the other hand we
manage to enhance the code quality quite much in the optimized case, thanks to
all of our peephole optimizations. We have invented rather advanced patterns to
be recognized by the peepholes, and the gains won by them should not be
neglected.

3.5 Remaining work

In the following sections we discuss things that remain to be done before we consider the com-
piler being a useful tool for developing software. The ANSI C standard requires for example that
a set of library functions are available for the programmer, and those are still to be implemented.
Testing and validation of the compiler are also things left to be done. In the last section we discuss
improvements that could be done to the compiler with a limited amount of work. We estimate that
implementing all the standard libraries, providing debug support and running a validation suite
would take almost as much time as we have spent until now.

3.5.1 Standard C library functions

If one wants to claim that a C compiler supports the ANSI standard, one must make certain library
functions available, which the programmer can access when including header files such as;
'stdio.h ’, "math.h ’etc. In this project there was simply no time left to investigate how diffi-
cult it would be to construct and build these libraries. Most of the libraries are written in C code

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag90

and the idea is that one should compile these files with our Thor cross-compiler and directly gain
access to all the standard libraries. Although this principle might be true with some libraries
where no system dependent parts are included, it is not true with libraries ssichioals *

where some parts need to be specially written for Thor.

3.5.2 Validation

There are several commercial validation suites of C programs with which one can test an compiler
and verify if it lives up to the claim of being an ANSI C compiler. Unfortunately the term “ANSI

C” is not very strictly specified and there exist as many interpretations of this term as there are
compilers. It seems that a competition among these validation suites is going on in trying to make
the most obscure interpretation of the ANSI C standard. We received some samples from a com-
pany offering a test suite and we do not remember that GNU CC'’s front end succeeded to parse
even one of the sample programs, even though both the test programs and GNU CC claim to be
ANSI C compatible.

A good validation suite should not only test the front end by trying to construct nearly impossible

programs to parse but it must also test other parts of the compiler like code correctness etc. Pro-
grams testing correctness of the code are often so called self-checking, for example, a message
may be printed on thetderr ' stream if the compiler fails to deliver correct code. Since we

have not yet implemented any standard libraries, we have conclusively not been able to run any
programs of this kind either, due to lack of time. B88€ENDIX D - 'List of C validation suites’

for a listing of companies offering such suites.

During our project, when we tried to test the compiler we usually wrote our own test programs
which contained some special C constructs we wanted to validate, and when a construct seemed
to work we tried to stress the compiler with yet another C construct. Often we tested how the
compiler dealt with addressing modes. When our own test programs seemed to work satisfactorily
and we could not figure out anything more to test, we tried to compile some source files of GNU
CC itself and by studying the assembler code we discovered several hard-to-find bugs. When we
had integrated the assembler into the compiler we also tried to run a few programs on the Thor
chip itself, but any true validation of the compiler in the sense of running a whole validation suite
on the chip has not been done.

3.5.3 The compiler

In the following sections we discuss problems concerning debug support and minor improve-
ments that could be done to further enhance the code quality.

3.5.31 Debug support

In our present version of the compiler we have not provided any debug support at all, and we have
not given much thought on how to solve the problem in the best way, even though we have some
ideas.

In the .h ’-file one can define macros that activate one of the standard debug formats, such as
DBX, DWARF, SBD, XCOFF or GNU’s own format GDB. If one chooses to use one of these for-
mats, additional information is printed to the assembler file concerning matters like: file name,
lines in the source code etc. The assembler must in turn be prepared to receive this information

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag91

and integrate it into the object file. Running the program in a debugging tool, like GNU’s GDB, is
a great help when trying to find bugs in a program, since one is able to identify on which line in
the source code the program is executing, which frames are on the stack, contents of variables etc.

The debugging environment used when evaluating Ada programs do not use any of the debugging
formats mentioned above, it uses the IEEE Standard 695, and this format should be the only one
of interest to support because C programs are likely to be evaluated in the same environment. We
have not investigated the difference between this format and any of those supported by GNU CC.
It might be possible to make some of formats supported by GNU CC work accordingly to the
IEEE format, probably with some changes in the source code of GNU CC.

The assembler does not support this IEEE standard today and must also be adjusted to make
debugging support possible.

When studying how other GNU CC ports handles the debugging challenge we have found some
pretty obscure attempts when trying to adapt debugging support to their systems and environ-
ments. One port we studied let a standard debug format output the debug information to the
assembler file, as usual, but before the file was passed to the assembler a preprocessor was exe-
cuted on the file removing all debug information and saving it in some other way. Changes were
then made to the debug format. After the assembler had run and thus produced an object file, the
debug information was inserted into the object file. We consider this solution to be a very ad-hoc
way of dealing with debug support and we do not recommend this approach on this compiler. We
think is should be far more easier to make IEEE adjustments directly in the source code even if
severe alterations would be required.

3.5.3.2 Simple improvements of the compiler

Many small and big improvements can be done to the compiler. Here we present a few small
ones:

» Compare improvementBlormally, when emitting the RTL, we expand an opera-
tion into three parts, first a push instruction, then the actual operation and in the
end a pop instruction. However, when emitting the compare instruction we only
expand it into one single part. The improvement would be to make it into two
parts, first a push instruction, and then the actual compare. The reason for not
doing this in the first place is that the jump-optimization pass in the compiler
removed the compare instruction without removing the push instruction belong-
ing to it. This might not be a problem any more, however, since we now have
made the TMP-register RTX into a common, global object and in this way
enhanced the workings of the jump-pass slighihy it now seems to remove all
superfluous push instructions. If one manage to expand the compare into two
parts, one could probably remove some peepholes and maybe make the pro-
duced code better.

* More peepholesThe normal optimization passes in the compiler does not work
in a satisfactory way in all situations. Many different combinations of instruc-
tions still remains to be improved, but one should always try to determine if it is
worthwhile to write a peephole. Some combinations are rare and might be
skipped. To find new peepholes to implement, study the resulting code!

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag92

4 Conclusions

In this chapter we give a survey of our thoughts of this project. We have made some conclusions
about how difficult or easy it is to do a port of GNU CC. We have also found some deficiencies,
both in Thor and in GNU CC. Finally, some future improvements will be mentioned.

4.1 Conclusions drawn from our work

Making a port of GNU CC has its advantages and drawbacks. We here try to present them,
divided into two sections. One for general opinions, and one for Thor specific issues.

4.1.1 Advantages and drawbacks with trying to make a port

Here follows some opinions of ours concerning the porting of GNU CC. The opinions in this sec-
tion are quite general and are not specific to Thor.

We begin with some advantages:

» Making a port of GNU CC certainly limits the total workload compared to devel-
oping a compiler from scratch which in many cases is a project lasting over sev-
eral years. The total amount of work in our project does not exceed 730 hours
per person, including writing this report.

* As mentioned before, GNU CC is a freeware program and there is no cost what-
soever obtaining a version of the compiler. Thus one gets thousands of hours of
work for free.

* GNU CC has a reputation of being a reliable, fast and powerful compiler for
most of it's target machines. Often, GNU CC is used as a reference when a meas-
urement is desired of how good code a compiler is able to deliver. Statements
like: “... able to deliver code as good as GNU CC” are seen once in a while.

* In principle, one gets not only a C compiler when porting GNU CC, one gets
several compilers for different programming languages, one for each front end
available.

* We believe that it is pretty easy to configure and install a compéderAPPEN-
DIX E -, Installation of GNU CC for ThrAll one has to do is to inform the
configure script and the makefile of what host and target the compiler is intended
to work on.

» The overall goal of GNU CC is to deliver reliable code for an arbitrary, byte
addressable, 32-bit register machine. When one tries to port it to a word address-
able stack machine (Thor), one must be prepared that everything might not work
according to the plan, but writing a port to a new register machine, with a gener-
ated code of acceptable quality, should not be a particularly hard mission, since
you are not forced to deal with the kind of problems we have encountered during
this project.

There are also some disadvantages:
» The intention of GNU CC is, we believe, that all one has to do when porting the

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag93

4.1.2
When

compiler is to write a few files, independent of the bulk of source code, without
needing to read any of the source files. Due to, in certain parts, incomplete docu-
mentation we soon found this goal unrealistic. In order to obtain full understand-
ing and control on how GNU CC works, we were compelled to both study the
source code, sometimes very carefully, and unfortunately make a few changes in
the source code, due to various reasons.

* When we first started the project we worked with version 2.6.3 of GNU CC and
later on we switched to the brand new version 2.7.0. Unfortunately, some of the
standard macros had changed in their definitions and semantics. If one wants to
make an unofficial port of GNU CC, one must be prepared for incompatibilities
that may occur if a large update is issued.

 As said, the back end of the compiler may work together with several front ends,
and due to differences between the supported languages, the GNU designers
have not been able to construct a parser completely according to the ANSI C
standard. The differences are small, so one will almost never notice them.

Making a port to the Thor microprocessor

doing the port of GNU CC to Thor we have made the following conclusions:

* The GNU C Compiler can be ported to a machine that uses stack oriented
instructions instead of registers. There are several possible strategies to chose
between and we have chosen one which have one simulated register, the TOP
register gee 3.2.1, The lack of registers in Th@NU CC has a rudimentary
support of a stack-based machine because it implicitly reloads unallocated regis-
ters into stack slots.

» Even if GNU CC is designed for 8-bit addressable machines, one can use it for
Thor, which is 32-bit addressable, but it is difficult to make the size of the basic
C data types less than 32 bits (the character type). This may be a big problem if
one is writing a word-processor with a lot of character manipulations, but we do
not believe that it poses any serious problem for space-oriented, real-time appli-
cations. We have chosen to let all data types have a size of 32 bits, and this sim-
plified things a great dealSée 3.2.3, The 8-bit addressing prohlem

» The generated assembler code has fairly good quality. The register preference of
GNU CC sometimes causes code to be produced that calculates expressions in
the wrong order, resulting in many stores and loads from stack slots. It also
causes a lot of copying between different temporary stack slots. For smaller
expression one gets a better result due to the peephole optimization. A compari-
son with the Oden Ada compiler shows that the produced code are quite often as
good as that of the Ada compileeg 3.4.2, Comparison with the Oden Ada
compiley.

» The GNU C Compiler has not been officially ported to any machine with 2 delay
slots and the pass handling delay-slot filling is not completely free from errors.
This fact and the fact that we have changed the semantics to be able to represent

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag94

push and pop instructions, make delay-slot filling hard to use. We have only
managed to make delay-slot filling work for unconditional jumps.

4.2 Deficiencies

In the process of porting GNU CC, we have discovered some deficiencies, both in the Thor archi-
tecture and in GNU CC. Some of the things mentioned below might not be considered a defi-
ciency by everyone, but we have include them anyway, until we find a more appropriate place for
them.

4.2.1 Deficiencies in the Thor Architecture

During our project we sometimes faced things in the processor we wished were solved in another
way and some general improvements possible to do.

» The set obkubtract reversanstructions lacks, in our opinion, the instruction
'SBRI’, i.e. subtract reverse immediate. The standard name handling the
reversed subtraction would have been easier to write if that instruction had
existed. In our solution we have to occupy extra words of memory, since the con-
stant in the operation is placed inAATAdirective and in turn referred to via a
label reference.

» There are two additional data move instructions, apart from the push- and pop
instructions, calledCDX and 'STX (see APPENDIX C -, Instruction set for
Thor) which we do not utilize at all. We have not figured out any situation when
it would be beneficial to use them. ThéX instruction moves data placed in
the stack to another location in the stack, where this location is indirectly pointed
out by the TOP-register two instructions prior th& DX. The most interesting
effect of this instruction is that the stack remains the same during the execution,
i.e. nothing is either pushed or popped to the stack. ¥ instruction has the
reversed effect compared to théX. One could add that the Oden Ada com-
piler does not utilize these instructions either.

» There is an instruction calleMODin the instruction set that we do not utilize in
our port. The reason for not making use of it depends on the interpretation of
modulus division¥) in the language C which differs from the one used in Ada.
Since the processor is originally designed for Ada it may be unfair to place this
point in this section.

* Most C programs, as well as C++ programs, use a lot of pointers. This causes a
lot of indirect addressing. We handle these addresses on Thor wiBSHX'
and POPXinstructions, and thus need 3 extra instructions (sometimes less)
compared to a stack relative address. This seems to be a little bit inefficient and it
also wastes memory. An improvement would be to add more registers to Thor,
handling indirect addressing. A minor change might be to change@eand
'STX instructions, and make use of the RR register. This register is not so com-
monly used and could be used as a sort of frame pointer, with@i&and
'STX as a push and pop instruction indirect via this register.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag95

4272 Deficiencies in GNU CC

In the following list we point out a few things that we think made our work more troublesome,
apart from the bugs we have foursg¢ 3.3.6, Changes in the source files of GNYad GNU
CC'’s overall register thinkingsée 3.4.1, GNU CC'’s preference for registers

» The overall documentation of GNU CC (GNU CC'’s emadofo pages) could
have been more complete and easier to understand. One is more or less forced to
read the source files in order to fully understand the purpose of certain macros.

» Some features in the compiler, usually controlled by macros, are not documented
at all. Therefore you can say it is pure luck if you happens to spot one in the
source files. In outthor.h ’-file we have a section in the beginning of the file
where we have placed each undocumented macro we use in our port.

» The documentation should have included, in our opinion, a scheme explaining
what one ought to keep in mind when making a new port, for example: the mini-
mal set of macros that ought to be defined. We were forced to apply some sort of
trial and error approach when testing certain things in the compiler.

» While the compiler is designed to be relatively easy to port to different
machines, some things are astonishingly inflexible. For example one is not able
to easily select the assembler and linker to use in the congele(3.7.3, The
'as’ and ’ld’ script fileg. There are several other things one cannot affect due to
the fact that the feature is hard-coded in the source files (see implementation of
'casesi ’'standard name in secti@3.3.7.

* GNU C C is designed for machines supporting byte addressing. For architecture
like Thor which is only able to address whole words this deficiency was pretty
frustrating éee 3.2.3, The 8-bit addressing problem

* GNU CC's approach of using macros in the source files in order to steer how the
compiler works certainly have the disadvantage that the source code gets very
hairy to read, since the source is covered wiifuef ' preprocessor com-
mands.

4.3 Future improvements

In this section we discuss further improvements that could be considered after the work described
in paragrapl8.5 'Remaining workhas been done. Thus we consider these improvements to be
less urgent to be implemented than those in the referred paragraph above.

4.3.1 Compiler enhancements

The compiler itself can be enhanced in many ways. In this section we discuss things internal to
the compiler.

43.1.1 8-bit characters
As we have explained in sectiBr2.3 'The 8-bit addressing problemve have chosen to have 32-

1. A text editor made by the GNU association.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag96

bit characters, due to GNU CC'’s inability to handle word addressable machines. Of course it
would be an improvement if we somehow managed to represent characters in bytes. We think
there are two possible ways to choose from in order to accomplish this task:

1) You could redefine our pointer size to point to objects of byte size. Since Thor
cannot address bytes, one have to recalculate each address in the program, so the
data accesses are word aligned. This implies that the whole port has to be rewrit-
ten and the part of the strategy could be thrown into the wastepaper basket. We
believe that solving the problem in this way would require a lot more work than
the next suggestion.

2) You could design a abstract data structure with functions working on it. Then,
when the programmer define a variable of this type, he can manipulate the varia-
ble with the functions. A C++ claSsrould have been perfect for this purpose, in
order to hide the representation of the data structure from the programmer. Sug-
gestion for the structure and strategy are discussed bridikaimple 8 A bit
structure’, page 39The advantages of selecting this way of solving the problem
are obvious. One can keep our basic port unaltered, which seems to work quite
well, and therefore one does not need to perform the manipulations of addresses
necessary in the previous suggestion.

There exists yet another way to accomplish the task, but we think it would require that significant
parts of GNU CC be rewritten.

3) Essentially, when defining the type and storage layout, you would like it to be
possible to define a pointer size of a byte, a character size of byte and the least
addressable unit as a wosk¢ 3.3.2.3, Type and Storage layaumnd then let the
compiler generate all necessary code needed for character manipulation. If this
where possible all our problems concerning 8-bit pointers would never have
existed. Unfortunately, as mentioned, the strategy of the GNU CC itself must be
redefined to make GNU CC support this layout.

We are convinced that the preferred strategy is alternative 2, and that the first and last one would
be to complicated.

4.3.1.2 Filling delay slots

One could make a true effort to make the GNU CC'’s delay slot filling algorithms work along with
the representation of oufFMP register 6ee 3.3.3.7, Control transfer instructionk this way
one might be able to fill the delay slots of conditional jumps.

4.3.1.3 Register allocation

The approach used today concerning the number of registers given to the compiler to play with
(see 3.2.1, The lack of registers in Thaould maybe be modified to reduce the size of local
stack allocations. In the section referred to, one can find a discussion why we chose our approach

1. A class in C++ is a abstract data structure which both include data members and member functions. The
only things visible to the programmer using the class are the functions working on the data structure. Ada’s
packagesesemble the class concept very much.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag97

and the existing alternatives. The best approach would be the one where the number of hard regis-
ters is not fixed, where it is always set to be the smallest possible number. This would result in
fewer stack slots, and a single stack slot may be reused several times in a function.

43.14 A different strategy with 'PSH and 'POP

In order to adjust our port to better suite GNU CC we could also change the overall strategy con-
cerning pushing and popping the stack. Instead of udefine_expand ’-patterns for opera-

tions, which generally emits in turn; A push, the operation and a pop, one could try the approach
using define_split "-patterns. A discussion concerning this matter is found in se8tihd

"The representation of 'PSH’ and 'POPIt is possible that this approach better conserves the
semantics of GNU CC concerning the push and pop templates, and some of the problems we have
encountered with differences in semantics could be avoided. Many optimizations are better done
at a higher level than the push and pop level.

4315 Move the 'clobber ’-instruction

Today, we emit aclobber ’-instruction after the pop instruction to indicate that the value at top

of stack has been destroyed in the pop instruction. The most logical position for this clobber
would be together with the pop, in a parallel construction, since the destruction takes place simul-
taneously with the popping. The compiler has not been able to interpret the parallel construction
correctly, but we have now changed th#P-register object into a global object and this might
remove some of the problems. If it was possible to placelblelber ' in a parallel expression,

we would get a safer solution where no other instruction can accidentally be placed between the
pop and the clobber.

4.3.2 Supporting the GNU extended C

As mentioned several times in this document, the GNU CC'’s parser does not entirely follow
ANSI C rules, due to the fact that the back end should be compatible with other front ends (pro-
gramming languages). For example, it is legal in GNU CC to write nested functions which violate
the ANSI C standard. At this moment, we do not support these extensions in our port, but in the
long run it is desirable to support these extensions, simply because it is a GNU C Compiler and
therefore should act like one.

4.3.3 GNAT and G++

GNU CC is designed to work with several language’s front ends, including; Ada, C++, Objective
C and Modula-2. In principle it should be a minor task to build a new compiler for a different lan-
guage, when the original GNU C Compiler is working satisfactorily. Included in the distribution

of GNU CC are front ends for C, Objective C (objc) and C++ (g++). The Objective C compiler
needs some standard library functions, which are not implemented yet, but a compiler for C++
should be easier to build. The Ada compiler, GNAT, is distributed separately from the normal dis-
tribution of GNU CC.

4331 G++

G++ is the GNU C++ Compiler (a front end) included in the GNU CC distribution. We have man-
aged to build and install it for Thor, but it is not fully operational. In short, the following things
can be said about the G++ compiler:

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag98

* You build it with the commandsriake LANGUAGES=c++and 'make LAN-
GUAGES=c++ install ’ after finishing a normal C language buikké
APPENDIX E -, Installation of GNU CC for ThHor

» The resulting compiler (thor-gcc or thor-g++) will compile many C++ programs
correctly. Even virtual functiodsseems to work.

« The assembler file will have dollar§;; in identifiers. The assembler must be
changed to accept these identifiers or some other solution must be found.

» There is a problem when defining global class objects. The constructors of these
objects must be called once in the beginning and never again. The same things is
valid for the destructors at the end. GNU CC has several possible solutions to
this problem. One solution is to use a program KK@LLECT2to extract infor-
mation about which global constructors are needed and then arrange a construc-
tor list for the function’ _main ’. Another solution is to have special link

sections, which collects information about which global constructors and
destructors to call. Read more about this in the GNU CC info pages.

* One has to make certain that the C++ front end does not generate any local stack
allocation code. If this happens, it will be impossible to eliminate the frame
pointer and the compiler will crash with an unrecognized instruction complaint.

If this happens one might handle the situation by changing the stack allocation to
a heap allocation instead (for example with functimalioc ' found in
'stdio '’ library), but this might not be possible in all cases.

» There is also a slight danger that G++ uses some features that are equivalent to
some of the GNU extensions of the C language. These extension are not sup-
ported in the current version of the compiler and this would mean that some G++
features might not work.

4.3.3.2 GNAT
The Ada compiler, GNAT, has not been investigated by us.
4.4 Did we accomplish our goal?

If one compares the goals set in the beginrseg (L.2, Definition and goal of the GNU CC-Thor
project with what we actually have accomplished, one can state that we came pretty much half-
way. We have succeeded in our primary goal of developing a C compiler based on GNU CC
(except the parts described in sectoh 'Remaining work’. The secondary goal of making an
arbitrary front end work, including a C++ and an Ada compiler, which also utilizes the Ada hard-
ware instructions, has not been accomplished. Instead, a lot of effort has been made to document
our solution, in order to make further development of the compiler easier.

1. Virtual functions can be inherited from a parent class to several child classes. When called the program
decides at run-time which instance of the function to actually run.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag99

5 Definitions and abbreviations
AG Address Generation

BOS Bottom Of Stack

CSE Common Subexpression Elimination
DMA Direct Memory Access

EDAC Error Detection And Correction
EOS End Of Stack

EX Execute

GCC Gnu C Compiler

GNU Gnu is Not Unix

GNU CC Gnu C Compiler

IEEE Institute of Electrical and Electronics Engineers
IF Instruction Fetch

OF Operand Fetch

PC Program Counter

PPC Prefetch Program Counter

RISC Reduced Instruction Set Computer
RTL Register Transfer Language

RTX An RTL expression

TAP Test Access Port

TOP The value residing on TOS

TOS Top Of Stack

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel

Pag100

6

Bibliography

The following documents are used as a reference:

[RD1]
[RD2]

[RD3]

[RD4]
[RD5]

[RD6]

[RD7]

[RDS]

[RDY]

[RD10]

Emacs info pages of GNU CC.
Version 2.7.0.

GNU CC source code.
Version 2.7.0.

Compilers Principles, Techniques, and Tools.
Authors: Aho, Sethi and Uliman.
Addison-Wesley Publishing Company 1986.

Guide for Microprocessor System Evaluation.
TOR/TNOT/0020/SE, Issue 1, 10 November 1993.

Oden Ada Compiler System User’s Guide.
TOR/TNOT/0010/SE, Issue 1, 5 November 1993.

Stack Risc Microprocessor.
Instruction Set Architecture for Prototype Chip.
TOR/TNOT/0005/SE, Issue 4, 21 October 1992.

Stack Risc Microprocessor.
User’s Guide for Prototype Chip.
TOR/TNOT/0006/SE, Issue 1, 21 October 1992.

Stack Risc Microprocessor.
Evaluation Board Specification.
TOR/TNOT/0012/SE, Issue 2, 2 November 1992.

Thor Datasheet.
September 1993.

IEEE Trial-Use Standard for Microprocessor.
Universal Format for Object Modules.
9 September 1985.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag101

APPENDIX A - Listing of machine dependent files

The succeeding sections under this paragraph will each give a listing of the machine dependent
files we have written to this port. In addition to the thoroughly discussed fiilesmd ’,

'thor.h " and 'thor.c ' the listings also include; thert0.asm ’-file which could be

described as a boot sequence which will be called when executing a prograhgrthe ’

libgccl.asm ’-file which contains the implicit library functions available, ths”and 'Id ’

scripts which overrides the calls the compiler does to the assenasl&ri@. the UNIX assem-

bler) and the linker [d ’, i.e. the UNIX linker) and finally thet-thor ’-file which contains
additional rules to the makefildakefile.in ") used when building the compiler.

Pag102

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

thor.md

Al

2\0% 1S3 L.\ winial
(0 == aAneUIBYE YIIYM) JI
}

[((u1D.,, .puesado~annejpi3EIS, 0 1O:pUBIadO YoTEW) (099) 19S)]
sl usui~auep)

({
‘([olspuesado ‘apow) Bai a210) = [p]spuelado
(((0 '[olspuesado) dX3X) d~SSIYAAY LNV.LSNOD 3%
NI == ([o]spuesado) 3000 139 |
(apowd ‘[o]spuesado) puesado ajdwis i) §i
/x "181s1681 opnasd e elA) peojal iIsnw
am ‘(anniejal od 1o xa|dwod SI) aAe|al }IelS Jou SI Q puelado §| /

}

[((... .pUBIBdO BTEIPAWWILU, 0):pUBIada Yorew) (099) 19S)]
1b1s), puedxa~sulep)

159} ‘aredwo)

‘sayejdwa) ssajaweu
0B} Ul 91 A8y "SIUBIWOD aJe 4, Ynm Buluuibaq saweu ||y

'suonaNJIsul isow 1oy sarepdn
9p0J UONIPUOD S3jpUBY Y Wi 3jy Ul DD J1VAdN IDILON sunap# oioew ddo

‘e 18 ‘x YoJew ‘usul_aulap Uo UORIUSWINIOP 10} JOP°[H, Bl 89S

*uasoyo sl 9|l AU} Ul BUO 1Sl By}
‘Aidde suianed sidininw uaypn “sussned uononisu

/. /

Jxx SNOILONYLSNI x+/
/

(((.2qqojo,, Buls 1suo2)
[
(.J2gqgojo,, BuLns Isuod) (,os1w,, ,adAy, me ba)
(,pabueyoun,, Buys 1suod) (,dou,, ,2dA), ;e ba)
(,8redwoo, Buys Isuod) (,oredwod, ,adAy, me ba)
(.T198S, Bus Isuo2) (e, ,2dA, me ba)
(.42qqoja,, Buns1suoo) (,ewlouysnd, ,adAy, ;e ba)
(.218s,, BulisTIsuod) (,ysnd,, ,adAy, e ba)
(.42qqgojo, Buls Isuo2) (.xdod, ,adA, me ba)
(,Adod,, BusTIsuog) (,dod, ,2dA), ;e ba)
(.48qqoj2,, BuisTIsuog) (,xdwnl, ,adA, e ba)
(.12qqojo,, BuLs Isuod) (.l1ea,, .adAy, ;e ba)
(.pabueyoun, Bums 1suod) (,dwnlpuod, ,8dAl, me ba)

(,pabueyoun, Bus Isuod) .2dA1, me ba)] puod)

.2Iedwoa‘Adod‘zias 1195 pabueyoun‘iaqqold,, 99, e~ aulap)

‘puesado-aredwod sy} yum Tanjea s}as ‘aledwod e - aredwod
‘arendoidde i Tanjen ayepdn

‘puesado Jayjoue 03 paidod s Bai-dwi sy - Adoo

‘[T*0lpueiado woly 13s S| Zzanjea pue TanfeA’sniels 99 - 219s

‘[o]lpuesado wouy 18s S| TaneA'sNlels 29 - REN

abueyo ou - pabueyoun

pakonsap 90 - 1aggojd

110949 9P0OI UOHIPUOD !

(

() (u) (1. JpBUaY, ;e ba) (,s9A, ,J0|s Aejap o) o, e ba) pue)

() (nu) (1., pbuay, nye"bd) (S84, Jojs™ Aejep™ioj o, e ba) pue)]

(.dwnf,

(((.s9A,, BuysISU02)
(,ou, Bulys Isuod)

adAy, me ba) Aejep auyap)

(,xdwn[‘rewsouysnd‘|jea‘dwnl‘dwnlpuos, ,adA), e ba) asja~uayy J1)
.SaA'ou, ,Jojs™ AejapIoj {0, Jire” duyep)

jo[s-Ae[ap 10§ 30 SI uonoNAsul Ji Bunsa |

((T ImIsu02) ,, pbual, e auyep)

suononsul #

((osiw, BuinsTIsuod)
Lsiw‘dou‘aredwoo* e o ysnd‘ysnd'xdod‘dod xdwnfea‘dwnfpuoa‘dwni,
L.2dA1,, e~ auyep)

uonelado }nejop asiw
uopesado ou dou
uolyesado jujod-Buneoly doyeoy
uoionasul onawye Jebajul yue

1ysd pue Jysd ‘ysd ysnd
dod 108.1pUl xdod
idod pue dod dod

Ireaydwinf 30a1pur - xdwinf ¢

|[ea feuoppuodUN e

dwn(jeuompuoadwnlpuod ¢!

sdwnl jeuol

"usul yoea Jo UONeIISSe|D

uooun dwn(i

/

[ex SALNGIYLLY x«/
/

UOISIaA JoyL 19)1dwod NND 104 uonduosap aulyde -

I+

M

UOISISA M3N STTTS6 1L 'OH 00T «

S)ylewas ayep Aq PasINSY «

M

STTTS6 /ISiAbpun sewoy] ‘uossreuuns AlreH Joyiny

(saiouspuadap oN) Jajdwo)

(salpuapuadap ON) aulyoep
SUON (o7]]

“1a)idwod ay} Buip|ing usym pasn
abesn

‘asodind s jo uonduosap e smojjo} uteped yoea yum Buoly
suonesado

"uoneIUBWNIoP S, NND Ul
paquasap ate suiened ay) jo sasodind sy “Jo|idwod ay)
Aq panoddns suononisul |fe jo uonduosap e sanlb ajl ay L
asodind

pwrioy)

%
x
%
%
x
%

x
x

X K K K K K K K X K K K Kk ¥

Pag103

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

thor.md, continued

Al

‘([T]spuesado) ysnd xa|dwod Indino
ESE)
‘(spuelado ‘[aaneulale yaymlajqes) usul- wse ndino
(T =i sneUIBIE YoIYM))
L\ \T% HSd.\ } = [laigel, seyd oners
x "J9syo doy Joy), Bunuswaloul alojaq usul INdiNQ «/ }
*u
[((.wD,, .puesado™ [essuab, T 4O:puesado yorew)
(,w‘w, pueladoysnd, 0 40O:puelado yojew) 18s)]
Jusnd”jbaouw,, usui~suyap)

({
‘aNoa
((epow 0 ‘spuesado) aouanbas anow Hwa) i

}

puesado esauab, T |O:puelado yorew)
(. wpuRIBdO [RIBUAB, O |O:pueIadO Yorew) 13s)]
JbAaow,, puedxa suyap)

({
‘3INod
((epow40 ‘spuesado) asuanbas™ anow Hwa) ji

}

[(C.. wpuelOdO [RIBUBBG, T 4O:puRIadO YoTRW)
(. wpURIBdO [RIBUSBG, 0 4O:pueIado YdYew) 13s)]
Jbrow,, puedxa aulap)

dodyysnd ‘enopn

yibuay, e 1es)
dAy, me1es)]
{

(Gszese
(,oredwoo*aredwod‘aredwod‘aredwos‘aredwos‘aredwos,

(AT2% JdWNOW ©
A\T2% JdND.\ & 0 == € / SAIRUIBIE YDIYM) LINal

‘([o]spuesado) ysnd xs|dwod Indino
as|e

‘(spuetado ‘,\0% HSd.\) usul_wse ndino
(T == € % aAIrRUIB) R YdIYM) JI 3S|D

{(spueltado ‘,\0% IHSd.\) usul_ wse Indino
(0 == € 9% aAneUWIBIE YIIYM) JI

T =1snlpe oIS pasu asedwod Joyr
}
*a

uelado ajdwis, T 40O:puelado yorew)
(w01 'w1d uelado [esauab, 0 40:puesado” yorew) aredwod)
(099) 109)]
Jbdwo,, usui~auyap)

Wbusy, me1es)
dA), e T19s)]
{

(GLy'y' Ly
(,2redwod‘aredwod‘aredwoo‘aredwos‘aredwod‘aredwoo,

“(.\0 dINDNO IHSA\TZ% NAND.\ L
A0 dINDNO IHSA\TZ% NAIND. & 0 == € / dAIRUISYE YIIYM) LINa)

‘([o]lspuesado) ysnd xsdwos ndino

as|@
{(spuetado ‘,\0% HSd.\) usul_wse ndino
(T == £ % aAeUIB)E YdIYM) JI BS|9

‘(spueiado ‘,\0% IHSd.\) usui” wse indino
(0 == € % aAeUIB) R YoIym) ji

‘Z =1snlpe yoels pasu asedwod oyl

}

(usur) d"dwn["paubisuniasn_ 22 Ixau,
[(((arr'wwiw, puetado ajdwis, T 1O:puelado yorew)
W9 1'wd’l, Jpuetado fersuab, o 1O:puetado yorew) aredwod)
(099) 108)]
Jpaubisun”ibdwo,, usul auyap)

((.5'z'z's'c'2's"2 "2, WabUa), Je 18s)
(,oredwoo‘ared

-wod*‘atedwod‘aredwod‘aredwod‘aredwod‘aredwod‘aredwod‘aredwod,, ,2dAy, me 18s)]

it
“(ATZ9% dIND. -
A\T2% dWD.\ & T == € / SnTeuId)e” yolym :
AT% IdIND.A & 0 == €/ SANBUIBIET YDIYM) Lina)

‘([olspuesado) ysnd~xa|dwod ndino

as|e
‘(spuesado ‘,\0% HSd.\) usul” wse ndino
(T == € % dAneUIA)E_YIIYM) JI aS|d
‘(spueiado ‘,\0% IHSd.\) usul_ wse ndino
(0 == € % aAeUIB) R YoIym) Ji

‘T =1snlpe xoels pasu asredwod oyl

}

J(usur) d dwn["paubisun™iasn~ 029 1xau
[((Caraw w w Yy, Jpuelado ajdwis, T 1O:puelado yoyew)
WO T'wId 'wd’l, Jpuetado fersusb, o |O:puetado yorew) aredwod)
(099) 199)]
Jpaubis”Ibdwoay,, usuiauyap)

{
‘([t]spuesado ‘apow4d) Bai 92104 = [T]spuesado
((epow40 ‘[T]spuesado) puelsado sjdwis j) ji
1« 19151631 opnasd e eiA) peojal iIsnw am ‘xajdwod sI Tpuesado J| 4/

}

[(((.... .puesado [esauab, T 40:puesado yoyew)
(s wpueIadO [RIBUSH, 0 4O:pueIado yorew) aredwod)

(099) 195)]
Jbdwo, puedxa~aulyep)

{
‘([T]spuesado ‘apowd) Bai 9210} = [T]spuesado
((epow® ‘[T]spuelado) puesado sjdwis i) ji
J« 19151691 opnasd e eIA)1 peojal 1snw am ‘xa|dwod sI Tpuesado J| «/

}

(@

puesado elauab, T 1O:puelado yorew)
uelado [esauab, o |O:puesado yorew) aredwod)

(029) 195)]
Jbdwo,, puedxa~aulyap)

([(.eredwoo, ,8dAy, e 319s)]
A{
A\(3N) 019z-uou skemie NNT 4472, uinal
as|e
\(03) 019z sheme WINT 413S.\ uInas
(0 == ([o]spuesado) TVALNI) §

Pag104

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

thor.md, continued

Al

(@

Jpuesado1a)sibas duwn, 0 |O:puesado yorew) 1as)]
,.ZIbybouNny Xy, Usul~auyap)

([Gywre, odAy, me18s)]
WL
Jpuelado 1aysiBai dwy, T 1O:puelado yorew) 40:1e0))
.=, ,puelado JaisiBai dwn, 0 40O:puesado” yorew) 1as)]
.ZJbibreoyy,., usur~asuyap)

({
‘aNOa
{(apowd ‘[o]spuelado) dod yHwa
(™40 Bar dun
‘apow4d ‘XI4) X1~ usb
‘apow|d ‘XId) xu~ usb
XU Bas dwy
‘apowqIOA ‘13S) XU uab) usui Jwe
{(apow40 ‘[T]spuelado) ysnd ywa

XU 40 6l dwi xu uleixa
XU IO Bas dun xu ulsixe

}

[((((.. .puesado Tesouab, T 40:puelado™yorew) 4O:XY) 1O:XY)
(. wpueIadO [RIBUSH, O 1O:pURIado yotew) 18s)]
.ZIbjbounnxyy, puedxa aunap)

({
‘aNOa
‘(apow40 ‘[o]spuelado) dod Hwa
(G 10 Bas dun

‘apow4d ‘1vV0Td) X1 usb
XU 40 bBas dwy

‘apowaloA ‘13S) X1~ uab) usu nwe

‘(apowd ‘[T]spueiado) ysnd jwe

XU 40 6l dwi xu uleixa
XUT1O Bal dwi xul uisixa

}

[((Cw wpursado™R18USG, T 1O:pUBIadO ™ YorRW) SO 3R0))
(. wpueIadO [RIBUBH, 0 4O:pURIadO yotew) 18s)]
.Zibibyeoyy,, puedxa suyap)

UOISIBAUOD JeOl)'XI- "

(((+'Tw nBUBY, e T10S)
(.xdod‘dod,, ,2dA, ;e 19s)]
{
L\ Wima
‘([olspuesado) dod xajdwoa Indino
as|a
‘(spuesado ‘[anewsaiie” yaiymlajqes) usul-wse Indino
(T =i aAITRWIBYE YIIYM) JI
\ “\02% dOd.\ } = [I81qel. reyo oness }

*u

[((4,, pueltado JaysiBai—dwn, T |O:puelado yorew)
(LW, .pueiado essuab, o 1O:puelado yorew) 1as)]
Ldwy dod 1baowy,, usui—auysp)

([(.¥'T.. LnBUB), e Ias)
(.xdod‘dod,, ,adAy, 1meT19s)]

\ LInas
‘([o]spuesado) dod xajdwod Indino
as|e
‘(spueiado ‘,\0Z% dOd.\) usul_ wse ndino
(0 == anireusR)E"YIIYM) 4i

}

*n

[((4°1,, Jpuesado Jaisibal dws, T 40:puesado yorew)
(w10, .puelado [essuab, 0 40O:puriado yorew) 19s)]
Ldwydod™jbaowl,,, usui—auyap)

(' T'T., LpBUa, J1ye19S)
(.ysnd‘ysnd‘ysnd,, ,2dA, me1es)]
£
Ao\ UINJR)
‘([t]spuesado) ysndxe|dwos ndino
ESE]
‘(spuelado ‘[aneusaye yoymlajges) usul wse Indino
(z =i anyewsale yaym) ji
LA “\T% HSdL “\T% IHSd.\ } = [I81gel. eyd o_EJ

[((wd']., Juesado feiauab, T 1O:puesado yoyew)
A4, puesado JaisiBar dwy, 0 [O:puesado yorew) 18s)]
Ldwyysnd ibarow,,, usui auyap)

([(.7'T. JpBuBY, e 188)
(,ysnd‘ysnd,, ,adA,, me 1es)]
A{
2\ uinial
‘([T]spuesado) ysnd xajdwos ndino
asle
‘(spuelado ‘[anreusaye yoymlajges) usul wse ndino
(T =i aAneUIB)EYOIYM))
L\ \T% HSdW\} = [1a1ges teyo onels }

*u

[((w0,, puesado Jesauab, T 4O:puesado yorew)
(.4, Jpuesado1alsibas dun, 0 4O:puesado yorew) 18s)]
Ldwyysndjbaows,, usui—auyap)

(7' T'T. JpbUB), e 108)
(,Jewsou—ysnd‘rewlou ysnd‘rewsouysnd, ,adA, e 1es)]
{
L\ Wmal
‘++]asyo”doy oy}
‘([t]spuesado) ysnd~xa|dwos ndino
as|a
{(spuesado ‘[anreussye yoymlajges) usul wise ndino
(z =i anewsayeyaIyM))
il “\T% HSd "A\T% IHSd.\} = [Jalqes, seyd onels
Jx "Jasyodoy Joy), Bunuawaioul a10jaq usul INdINQ «f }

*n

[((wdl., Juesado fessuab, T 1O:puesado” yorew)
(Lw'w'w, ,puesadoysnd, o |O:puelado yorew) 19s)]
.ysnd~1baouwy,, usui~auyap)

(' Tu wpBuB), e I0s)
(JJewsouysnd‘rewsouysnd, ,8dAy, me18s)]
£

L\ Wmal

‘++19syo doy Joyr

Pag105

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

thor.md, continued

Al

[(((.0'0. Lpuesado Ja3SIBaI dws, Z |O:puelado yorew)
('w, puelado ajdwis, T 1O:pueiado ydjew) |O:snuiw)
A=, Jpuesado Jaisibal dwy, 0 |O:puelado” yorew) 18s)]
a1 glbgnsy,, usul~auyap)

dAy, mees)]
. 12% 449S..

([Gypre,

[(((.0.. .puelado iaisibal dwn, z 40:puelado yorew)
(Jw, puesado sdwis, T 4O:puesado yorew) 4O:snuiw)
(.J=,, ,puesadoJersiBai dws, 0 4O:puesado yorew) 19s)]
a1 gjbans,,, usul aulyap)

([Cupre‘ynre, ,2dAy, e 1es)]
.22% ans
22% ans
©.

[(((4'w, puelado ajdwis, z 1O:puelado yorew)
(.00, Lpuelado 1aisibal dwn, T 1O:puelado yorew) |O:snuiw)
A=, Jpuesado Jaisibali dwy, 0 |O:puelado” yorew) 1as)]
.£1bans,,, usul~auyap)

([Gupreyure, ,2dAy, me1es)]
WC2% 49NS
2Z% 49Ns
.
[(((*w,, ,puelsado~sjdwis, z 40:pueiado yorew)
(,0‘0. Lpuelado uasiBas dwy, T 4O:puesado yayew) 4O:snuI)
1=, puelado iaisiBaldwy, 0 4O:puelado yorew) 19s)]
.£4bans,, usul~suyap)

({
‘3INod
((epowd ‘spuesado) aouanbas gns Jwa) ji

}

puelado jesauab, z |O:puesado yorew)
Jpuesado [esauab, T |O:puesado yorew) |O:snuiw)
(. wpuRIBdO [RIBUAB, O |O:puRIadO YoreW) 13S)]
.£lbgns, puedxa~auyap)

({
‘aNoa
((epow4d ‘spuesado) aduanbas gns Hwa) ji

}

.pueiado essuab, z 40O:puelsdo yorew)
Jpuelado jesauab, T 4O:puesado yorew) 40:snuiw)
(. wpuRIBdO ™ [RIBUSBB, 0 4O:pueIadO YdyewW) 13s)]
.£ibgns,, puedxaauyap)

oengns o

([(.,rewsou—ysnd,, ,2dAy, e 10s)]
{

“\2% SOLINL\ uImal
‘([z]spueiado) TYALNI =-19syjo doy Joyy

[(((M., LpueIadO BYRIPBWWI, Z |O:pURIBdO YoTeW)

puelado aisiBai~soy, T 1O:puelado yorew) |O:snid)
(. wpURIBdO ™ IB)SIBAI SO, O |O:pURIBdO YoYRW) 18S)]
LSOl Ibppe,,, usui~aulap)

(... .pbuay, nye198)]
f
€% 1AAV\SOL HHSd.\ uinai
‘(T + (([glspueiado) TYALNI) ‘8powdIOA ‘LNI"LSNOD) X1~ uab = [g]spueiado
/x "UONONASUI-HHS d 10} dresuadwod 4/ }

=

*u

[((G.1., Lpuesado ayelpawwi, Z 1O:puelado yorew)
puelado JaisiBai~soy, T 1O:puelado yorew) |O:snid)
=, ,puelado 1aisiBai dwy, 0 |O:puelado yorew) 18s)]
.ppesoy” Ibppe,,, usui-aulap)
:9SeD UoeUIWId Jajulod-awel) sWos sajpuey Syl ¢
([Gpue‘yire'yie, ,2dAy, meT18s)]
wC2% Aav
22% aav
<% 1aav
©.
[(((*w uelado”a|dwis, g |O:pueltado yarew)
(,0‘0°0. JpueIadO JBISIBRIdwy, T 1O:puetado yorew) |O:snid)

.J'14=,, puetado 1aysiBas dwy, 0 |O:puesado yoyew) 18s)]
.bppe,, usui~auyep)

((Gynre'yure, ,2dA, meT18s)]
.C2% 4aav
2% 4aav
@.
[(((Aw, puesado ajdwis, z 40O:puelado yorew)
pueiado ualsibal dun, T 40:puelado” yorew) 40:snid)

(.44=, puelado taisiBai—dwy, 0 40:puelado yorew) 1os)]
Jbppe,, usui~auyap)
{
‘aNoa
((epow® ‘spuesado) asuanbas™ ppe nwa) JI
}

puesado [essuab, z |O:puesado yoyew)
.puelado esauab, T |O:puesado yorew) |O:snid)

(. JpuUeIBdO [RIBUSG, O |O:pURIBdO YoTEW) 18S)]
.Elbppe, puedxa auyep)
{
‘aNoa
((epow4d ‘spuelado) aausnbas ppe Nwa) Ji
}

[(((.... .puesado™[esauab, z 40:puesado yoyew)
.puelado jesauab, T 4O:puesado yorew) 40:snid)
(. JpUBIBdO [RIBUSH, 0 4O:pueIado yorew) 18s)]

.£ibppe, puedxa~auyep)

ppv

([(.pue, 8dA, nre18s)]
AN

[((((.0. .puelado 1a1s1Bas dwn, T 4O:pueIado yorew) 4O:x1) 1O:XY)

Pag106

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

thor.md, continued

Al

.puesadoessuab, T |O:puelado yoyew) |O:io1)
Jpuelado [esauab, o |O:puesado” yorew) 1as)]
.£1biol, puedxa auyap)

({
:3Noad
((aNyV ‘epowd) ‘spueiado) sauanbas™ aAleINWWO HWa) JI

}

puelado jesauab, z |O:puesado yorew)
uelado [esauab, T |O:puesado yorew) |O:pue)
(. wpuRIBdO [RIBUAB, O |O:puRIadO YorYeW) 13S)]
.Eibpue, puedxaauyap)

Jox'loI'pue g

((.5'S., .pBuUBY, e 18S)

(unre‘yure, ,adAy, me1es)]
T dOdN\T ¥8S1\2A% TNINAZA% AIQNO HSd
T dOd\T ¥9S1\2A% TNINNZA% AIANO HSd
.

[(((w, puesado ajdwis, z 1O:puelado yorew)
(.0'0. Lpursado ua1sIBas dwy, T |O:pueiado yoyew) |O:pow)
A=, puelado taisiBal"dwy, 0 1O:puelado yojew) 1as)]
.£lbpoul, usui—auyap)

dAy, mees)]
WC2% AId
22% AId
.

([C.upre‘ynre,

[(((w, ,puesado sjdwis, z 1O:puetado yorew)
(.00, Lpuelado 1o1siBas dun, T |O:pursado yorew) |O:AIP)
(.44=, ,puelado tasiBai—dws, 0 1O:puelado yojew) 18s)]
.EIbAIP,., USUI"auYap)

([(wprre‘yure, ,odh, meT10s)]
wCZ% 4AId
22% 4A1a
®.
[(((A'w,, pueladoajdwis, z 4O:pueiado yorew)
(.00, Lpuelado 1aisibal dun, T 40:puelado yorew) 40O:AIp)
A=, Jpuesado Jaisibal dws, 0 40:puesado yorew) 18s)]
JEJDAIP,, USUI~aulap)

(&1
‘3INod
((@on ‘spowd ‘spueiado) 8ousnbas™ daAERINWWOI UOU ™ WS) I

}

[(((.... .puesado[esauab, z |O:pueiado yorew)

(. wpuRIBdO [RIBUABG, T |O:pURIadO YoreWw) |O:poW)

Jpueladoessuab, o |O:puelado yorew) 18s)]
.Eibpow,, puedxa~auyap)

(&1
:3Nod
((A1Q ‘epowd) ‘spuelado) aousnbas™ aAieINWIWOI ™~ Uou™ HWSa) JI

}

[((G. LpuetBdO [RIBUBB, 2 1O:pURIadO YoTRW)

uesado™ [esauab, T |O:puelado yorew) |O:AIP)

(. JpuURIAdO [RIBUSG, O |O:pURIadO YoTRW) 18S)]
.EIbAIP, puedxa~auyap)
{
‘3NOa
((A1Q ‘epow4d ‘spueiado) aauanbas™ aAeINWWOI ™~ UOU™ HWa) JI
}

puelado [esauab, z 4O:puesado yorew)
uelado esauab, T 40:puesado yorew) 4O:AIp)

(. wpuRIBdO [RIBUAB, 0 4O):puUEIadO Yorew) 13s)]
.E4bAIp, puedxa~aulyep)
PO ‘aping 5
([Gpue‘yire'yie, ,2dAy, meT8s)]

WC2% NN

22% 1NN

2% ININ

©.

[(((a*w uelado ajdwis, Z 1O:puelado yorew)
(,0'0'0. pueIado I3)sIBaI dwn, T |O:pueIado yorew) |O:3Nw)
A=, puesadoialsiBaldwy, 0 1O:puelado yorew) 1as)]
.£ibinuy, usui~auyap)

([Gynre'yire, ,2dA, meT18s)]
WC2% 41NN
22% 47NN
@.
[(((w, puesado sjdwis, z 40O:puelado yorew)
Jpuesado alsibaldun, T 40:puelado”yajew) 40:3Nw)

(.44=, puelado taisiBai—dwy, 0 40:puelado yorew) 1as)]
LEibinuwy, usurauyep)
{
‘aNoa
((L7INW ‘epowd ‘spuelado) aouanbas™ aAeINWIWOD JWS) Ji
}

pueisado [essuab, z |O:puesado yorew)

Jpuelado [essuab, T |O:puesado yorew) |O:Nw)

puelado jesauab, o |O:puesado yorew) 18s)]
LEibjnw,, puedxaaulap)

{
‘aNoa
((L7INW ‘epow4d ‘spuelado) aousnbas™ aAeINWIWOD JWS) Ji

}

(@

Jpuesado[esauab, z 4O:puesado yoyew)
uelado [esauab, T 40:puesado yorew) 4O:3nw)

(. wpuRIRdO ™ [RIBUSG, 0 JO:PpUEIEdOYorEW) 185)]
L£ibinw, puedxa~aulysp)
Adnin “
([Gynre'ynre, ,2dA), nreT19s)]

.T2% H8S

12% ¥8S

©.

Pag107

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

thor.md, continued

Al

(&1
‘3INod
((LYLHIHSY ‘apow]d ‘spueiado) 8ousnbas™ dAERINWWOI UoOU JWa) ji

}

uesado” [esauab, z |O:puesado yorew)
Jpuesadoelsauab, T |O:puelado” yorew) |O:HUIYSE)
(. wpueIadO [RIBUBH, O |O:pURIado yotew) 18s)]
.Elbiyse, puedxa auyap)

Hus

([(.pe, 2dA), neT18s)]
.0 LON.

[(((.0., .puelado iasibal—dun, T |O:pueiado yorew) |O:10u)
(.=, ,puelado taisiBai—dwy, 0 1O:puelado yojew) 1as)]

.ZIbjdwoauoy,, usui—auyap)

([Gyne, ,odAy, me1es)]
w7~ LON.
[(((.0. puetado1eisiBas—dwy, T 1O:puesado yorew) |O:Bau)
=, ,puelado 1aisiBai dwy, 0 1O:puelado yojew) 1as)]

.2Ibbauy,, usul suyap)

({
‘INOa
{(apowd ‘[o]spuelado) dod Hwa
(™10 o dun
‘apow|® ‘LON) xu~ usb
XU 1O Bas dun
‘apowdIOA’13S) XU~ uab) usul nwa
‘(apowd ‘[T]spueiado) ysnd jwa

XUT1O Bas dwi xu uieixe

[((C... puelado [esauab, T |O:puelado yorew) |O:10u)
(. wpuRIBdO [RIBUAB, O |O:pueIadO YoYeW) 138)]
.2Ibjdwoauo, puedxa auyap)

({
‘INoa
{(apow® ‘[o]spuelado) dod Hwa
((Gaum 10 o) dun

‘spow|® ‘O3AN) X1~ usb
XU Bals dwy

‘apow IOA‘L3S) X1~ uab) usur ywa

‘(apowd ‘[T]spuesado) ysnd ywa

U710 Bas dwi xul uieixe

[((C... .puesado[essuab, T |O:puesado yorew) |O:Haeu)
(. wpuRIBdO [RIBUAB, O |O:pUEIadO YoreW) 13S)]
.2Ibbau,, puedxaauyap)

({
‘ANOa
‘{(epow40 ‘[olspuesado) dod nwe
(™40 Bas dun

‘((epow4d) X1 0LSNOD ‘apowi4d) Wwaw ISuod™ 8910}
‘apow4d ‘'SNNIW) XW~uab
XU 40 bas dun
‘apow@loA‘13s) X1~ uab) usul ywa
{(epow40 ‘[T]spuesado) ysnd nwa

XUT40 Bas dw xu wisixa
}

[(((. JpueIRdO TRIBUBB, T 4O:pUEISdO Yorew) 40:6au)
(. WpURIBdO TRIBUBH, O 4O:puUEIEdO yoTew) 18S)]
.2JbBau, puedxa aulep)

|dwo " suo ‘Bau

((Gynre'yure, ,2dA, neT18s)]
wC2% dOX
2% dOX
@.
[(((a*w,, Jpuesado sidwis, z |O:puesado yorew)
(,0‘0. wpueIado UBISIBaI dwn, T |O:purIado yoTRW) |O:10X)
(4=, Jpuesado aisiBal—dwy, 0 1O:puelado yorew) 1as)]
.£1b10X,,, USUI~aulap)

([Gupre‘yure‘yire,, ,2dA1, me10s)]
wCZ% dO
22% 40
2U% 140
©.
[((Ca*wy, puelado~ajdwis, z 1O:puelado yorew)
(,0‘0°0. LpueIado J3ISIBAI dwn, T 1O:pueIado ydrew) |O:Io1)
(194=, puesado ssisibaidu, 0 1O:puelado yajew) 1es)]
LE1bIoly, usui—aulyap)

([Cypre‘yre‘yise, ,odA, me 1es)]
wCZ% ANV
22% ANV
2U% IaNY
.
[(((w, Jpuesedo~adwis, z 1O:pueIado” YoyeL)
(.00'0. Jpurisado JalsIBal dun, T |O:puelado yorew) |O:pue)
.J4'14=, puetedo isisiBai dwy, 0 |O:pueiado” yorew) 19s)]
.£lbpue,, usui-auyap)

(f
‘aNoa
((4OX ‘epowd ‘spuelado) souanbas aAeINWIWOI NWS) JI

}

[(((... Louelado [RIBUBG, Z |O:pUeIado yorew)
(. JpURIBdO [RIBUSG, T |O:pURIadO YoTRW) |O:10X)
(. wpueIBdO [RIBUBH, O 1O:pURIBdO YolRW) 13S)]
cibiox, puedxa aulap)

(f
-aNod
((40lI ‘apowd ‘spueiado) asuanbas™ aAleINWWOD HWI) JI

}

[(((.. JpuesRdO ™ [RIBUSE, 2 1O:pUeIado Yotew)

Pag108

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

thor.md, continued

Al

.2bq, puedxa auyap)

(0%
(o)
0 puesado yorew) Jai~|agey)
((0ur1su00)

(099) nyy) asja”uayy) (od) 198)]
.N)q,, puedxa auyap)

[(((od)
((un wa 0 pURIBdOYOTRWY) JOI~[O0R])
((0 W Isu02)
(099) 1) asjeuayy™y) (od) 19s)]
0., puedxa~aulap)

[(((od)
((u we O puetadOyoTRW) JOI~[BqE])
((0 w"ysuo2)
(092) nib) asja” uayy) (od) 19s)]
.MBq, puedxa aulap)

(oW
[((od)
0 puesadoyarew) Jar”age|)
((0 uimIsu00)

(022) 16) asje”uayy) (2d) 108)]
160, puedxa~auyep)

[(((od)
(Gue v O pUEIBDO ™ YoYRW) JBI~ |BGRE])
((0 urysuod)
(099) au) asja™uayy y1) (od) 19s)]
.auq, puedxa aulep)

(n

[(((od)
0 puesado yorew) jai” |agey)
((0uimIsu09)

(099) ba) asja"uayy }) (od) 198)]
.bag, puedxa~auyap)

([(.dwnl, ,2dAy, nreT1es)]

{
L\#%0% dC.\ uInias

1osyo do) loy) = [xapuilre 1esyo doy Joyl
‘() wnu~jeqe) 1s1y 186 - ([o]spuriado) YIGWNN 13T 3A0D = X8pul Ul
/x ‘30| SIU} UM X20]q dIseq a3 10} 1asyo doy Joys [eniul ayy arepdn ./ }

[((Gun wn O pUrBIEdO™YOTEW) J017|30E])
(od) 308)]
Ldwnl, usui~auyap)

youeug o

(,auiqwodaid-gibjyse :ious,

.INISINOD 34038 HOHL.
.puelado [esauab, z |O:puesado yorew)
(.6, .pueladoaisibal, T |O:puelado yorew) |O:BIyse)
(b=, .puesado Ia1sibal, 0 1O:pueIado yorew) 18s)]
Lauiquiodaid-gibjyse,,, usui- auyap)

) 9N 0] pamoj[e ag Jou p|noys ssed-aulquiod ay] '

‘(pasn aq !

0} [YSE JueM aMm) pealsul pasn aq [|IM Usul-nw, sy} 1 INOYMUAA
*(9'pawdxa) pawdxa nul ul paziubodal ag 0} 818y Ajuo S| usul SIy]

([Gpue‘yire'yie, ,2dAy, meT9s)]
wCZ2% QdS
22% Qs
2% dS
©.
[(((2*w*N,, puesado ajdwis, z 1O:puelado yorew)
(,0'0‘0. Lpuelado JaysiBai—dwn, T |O:pueltado yorew) |O:MYIYS])
A=, pueladoialsiBaldwy, o 1O:puelado yorew) 1as)]
.£E1D1YS]y,, usurauyap)

([yre'yie,, ,2dA), me19s)]
WCZ% a1s
22% 1S
2% 1S
©.
[(((2*w*N,, .pueltado ajdwis, z 1O:puelado yorew)
(,0‘'0‘0. Lpuelado JaysiBal dwn, T 1O:pueltado yojew) |O:BIYse)
(4=, puesadoIalsiBasdun, 0 |O:pueiado yorew) 1as)]
.EIbjysey, usui~auyap)

([Gupre‘yure‘yire,, ,2dA, me19s)]
«CZ% AVds
22% avys
2% VS
@.
[(((2*w*N,, .puesado sjdwis, z |O:puelado™ yorew)
(.0°0°0. wpueIadO JBISIBRI dwy, T |O:puetado yorew) |O:LyIYse)
(4=, puesadoialsiBasdun, 0 |O:pueiado yorew) 18s)]
J£lbiysey, usu-auyap)

{
‘aNoa
((LY.L4IHST ‘apowd ‘spuelado) 8ousnbas™ aAeINWWOD Uou™ JWa) Ji

}

[((C... Louesado [esauab, z 1O:puesado yorew)
(e wpUBIBdO [RIBUSH, T |O:pURIBdO YoTEW) |O:LYIYS])
.pueladoesauab, o |O:puelado yorew) 19s)]

.£1b1ys), puedxa aulap)

(f
=\lel¢]
((L4IHSYV ‘apow | ‘spueiado) sousnbas aAeINWWOD™ UOU JIWS) I

}

[(((.... .puelado [esauab, z |O:puesado yorew)
puelado [essuab, T |O:puesado yorew) |O:uIyse)
puelado [esauab, o |O:puesado yorew) 18s)]

.£ibjyse, puedxa~auyep)

Pag109

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

thor.md, continued

Al

\ = Bulis|ea, reyo

}

.puelado areipaww, ¢ 1O:puetado yorew)
(Z ==) WNND3IY Y3LNIOd MOVLS 8q 1SN jaremag '
(2 10:681) 10:sn|d) (2 10:621) 198)
(((.6‘6,, ,puesado [essuab, z |O:puesado yoyew)
(LW, puelado Alowsuw,, T |O:puesado yorew) |jed)
(4=, Jpuesado sisifai—doy, o puesado yoyew) 18s)]
.dod™anjea |ea,, usui—auyap)

([(.9°€. JpbuB), 1ne 18s)
(xdwn(|ea,, ,odA, me 18s)]
{
‘Buis|ies uinal
‘([e]spueiado) TYALNI =- 1850 doy Joyy

‘(0 ‘[olspuedado) dx3X) |1ea 3081puUl INdin0
ESE]

L\dON\dON\0% TTvO.\ = Bulis|ea
(0 == aAeWIBYE YIIYM) JI

4.\ = Bulis|jea, 1eyo
}
u

.puelado areipawuwi, € |O:puetado yorew)
(Z ==) NNND3IY Y3LNIOd MOVLS 89 1SN joremag '
(z 10:681) 10:sn|d) (2 10:621) 195)
((,6'6,, ,puesado esauab, T |O:puesado yorew)
(W'D, puelado Alowsuw, 0 1O:puesado yorew) |ed)]
.dod™|[es, usui suyap)

([(.€. JpBua), e T19s)
(,dwnlpuoa, ,8dA), me 18s)]
A

S\dON.\ uimai
/% :P3J|l} Q JBABU [|IM 10|S Aejop PUODSS BUYL «/

‘0 =1snlpe oIS pasu” asedwod Joyl

‘(spuesado ‘ \dON.\) usui” wse ndino
ESE]
‘(spuesado ‘,\z SOLN.)) usul wse ndino
(z ==18nlpe>0R)S paau asedwod Joys) Ji 8s|d
‘(spuesado ‘,\T SOLN.\) usul_ wse ndino
(T ==18nlpe>o€ls pasu” atedwod Joy)) i
Jx "10[s Aejap 1s11} 8y} Ul Iels 3y 8101sal 0} SOLIN
ue Jiwa 1snw am asedwod e sem uononuisul snoineid ayl i 4/

(T ‘[t]spueiado ‘[p]spuesado) dwnlpuod indino

}

[(((Gur s © PUBIBDOYOTRW) JOUT[BTEY)
(od)
([(0 3ui"IsU00) (029)]
Jojerado”uosuedwod, T Jojesado yorew) as@” uayy H)
(od) 10s)]
.pasianal” dwnlpuod,, usul suysp)

("snowojoyouy are sdwn(jeu

puo))

il op 1sn[- sdwnl ay) Buisianal uaym uonnes [e1dads 1oj pasu ou S|
a1ay} os ‘puelado [eBa)|l ue Jo ased ul pasiel si uondaodxa ue 1oyl uQ
*(Apoa.109 spuelado [ebs||l a|puey 0} spaau ::

3uo J1) pJepuels 333 8y} 0} Buipiodoe asianal 0} [eha)|l ag ued i
sdwn(juiod Buneoy awos ‘sdwnl juiod Buneoy e jo Buisianal i

3y} Moj[e 0} sjuem auo Ji Aressadau Ajuo si uianed siy “ssed

dwn(ay) Aq pasn aqg 0 ‘dwn| [euonIpuod PasiaAul ue auyap osfe N\

([(.&. JpBUB), e 198)
(.dwnlpuoa,, ,2dAl, me 19s)]
f
dON.\ uinai
J« P3|} 8Q JBABU ||IM 10|S Ae[op PUOIBS BYL +/

‘0 = Isnlpe xoels pasu asredwod Joyx

‘(spuelado ‘ \dON..\) usui_wse ndino
ESE]
‘(spueltado ‘,\z SOL.\) usul_ wse ndino
(z ==1snlpe oIS pasu aledwod Joy)) §i s|d
{(spueltado ‘,\T SOL.\) usul_ wse ndino
(T ==18nlpe>orIS pasau asedwod Joyl) ji
/x '10|S Aejap 1S11) 8Y) Ul XIBIS 8U) 8101Sal 01 SOLN
ue Jwa 1snw am aredwod e sem uonaniisul snoinaid auyl i «/

‘(0 ‘[T]spuelado ‘[p]spuesado) dwnlpuod Indino

~ ((oc)
(G wn 0 PUBIBDO™YOYRW) Jo1T|B0E])
([(0 3 1su02) (029)]
Joresadouosuedwoo, T Jojelado yojew) as|a uayy)
(od) 195)]
Ldwnlpuoa,, usui—auyap)

(o

[(((od)
0 puesadoyoreww) jor~[aqe))
((0 uIsuo2)

(029) nay) asja™uayy Y (od) 19s)]
.Na|g, puedxa aulap)

[(((od)
(Can e © PUEISdO™YTRW) JOI™|OTE])
((0 umISu09)
(099) 9)) asja”uau) (od) 195)]
.210,, puedxa~auyap)

(o
[(((od)
(G v O PUBIDDO ™ YoTRW) J2I™ [BGE])
((0 3ui"3su02)
(099) nab) asja"uayy J) (od) 19s)]
.nabq, puedxa auyap)

(0%
[(((od)
0 puesado™yorew) Jai” [aqe|)
((0 usuoo)

(099) a6) asja”uauyy)) (od) 19s)]

Pag110

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

thor.md, continued

1

A

((((.B,, ,puesado areipawuwi, 9 |O:puesado yorew)

6, ,puelado [esauab, g |O:puetado yorew) |O:snuiw)
(od) 1O:snid) 1O:waw)

((.B., .pueisado jesauab, z |O:puesado yorew)

((.B., .puesado ayeipawul, T |O:puelado yorew)

Lpuelado esauab, o |O:puesado yorew)

10:snuiw) Na3)|) 8sja” Uayy 4)
(od) 108)]
T~ sBal [enuin~ arenuelsul ISased,,, Usul” aulap)

‘Wed dnpyorew ayi yim [rey usyy |jim

usul 8y ‘uononusul ay) asiubodaias usy) pue puesado
1511 3y} Ajuo abueyd 0} A1y oym ‘1~ sbBas [enuin~ajenels
u| pasiubodal aq 0} alay AjuQ "ulaned-Isased pasnun uy

(((FTTT'TT. LpBUB), e TI8S)
(,xdwnl*xdwn(*xdwnl, ,adA, e 1es)]

{
L\ LInas
‘(spuelado) Isases ndino
‘([olspuesado) ysnd xajdwos indino
ESE]
‘(spuelado ‘,\0% HSd.\) usui_wse ndino
(T == aneusa)e yoiym) i asjg
‘(spuetado ‘,\0% IHSd.\) usul_wse indino
(0 == anreuIBIE YIIYM) §I
}

[((Gun e € puRIRdOYOTRW) JOI~|BCR]) BSN)
(G e v PURISdOYOTRW) 1034017 0TI
((((z dnp~yorew)
(0 dnp™yorew) |O:snuw)

(od) 1O:snid) 1O:waw)
((w‘w‘w, ,puesado [esauab, z |O:puesado” yorew)
(« puesadoajelpawwl, T |O:puelado yoyew)
(w10, Jpueltado [esauab, o |O:pueIado” yorew)

10:snujW) Na)) 8sje” uayy §)
(od) 10s)]
LISase),, usui~aulap)

*J|osH 9|ge) 8y} JO Ssaippe ay st Anud
1S1)} BY | 'Sassalpe ainjosqe salols a|qel-dwnl fenjoe ayy !

abuel Jo 1o xaput j 01 06 01 T3gvYT IAOD 83U SI ¥ puesado
qe1 8y Jo} T3gvT 3A0D S! € puelado :
punog Wnwiuiw - punog wnwixew ay} si z puesado :!
punog wnuwiuiw 8y} si T puesado

xapul s| g puelado

dwnla|ge) e 01 paredwod Aem siy) ul 8pod Jsnaq aressush
ued 9M INQ UONINIISUI-8SED OU S| 818U Ajlenioe :Isased !

((.8'S'S., JpbuB), e 18s)
(,xdwn['*xdwn(‘xdwnl, ,adA,, me1es)]

A
‘'\dON\dON\Od ¥dOd\T 1S.\ uinas
‘([olspuesado) ysnd xs|dwod Indino
asle
‘(spuelado ‘,\0% HSd.\) usul_ wse ndino
(T == anneulaye yaiym) Ji asg
‘(spueltado ‘,\0% IHSd.\) usul” wse Indino
(0 == aAneUIBYE YIIYM) JI
}

[((wd'l., Lpuetado fesausb, o |O:puetado yorew) (ad) 18s)]
Ldwnl"1981pul, usui—auyap)

([(.dou,, ,8df, me18s)]
+dON..
[(0 i 3su0o)]

.dou,, usuiauyap)

[(0 [(0 3ui"1su02)] 3jve|0A 2adsun)]
.2bex00|q, usul auyap)

‘Juiod siy} SSo1oe panow Bulag Woly susul s¥20|q siyL “Alowauw jo e !
pue si)siBal prey |fe 12ggojd pue asn 0} PalapIsuod sl JTILYIOA DIdSNN

susul 9sIN

([(.8'S.. .nBuay, me 19s)
(.xdwnl‘res, ,2dA1, me19s)]
£
“\T- SOLW!NCY% dOd.\ uinial
‘(0 ‘[T]spueiado) dx3X) (lea 308u1pul INdino

L\T- SOLN\Z% dOd\dON\dON\T% T1VI.\ winai
(0 == anreusale yoym) §
}
*n

[(((.6‘B,, .pueiado [esauab, z |O:puesado yoyew)
(Lw'®, .puelado Alowsuw, T |O:pueiado yorew) |ea)
(,4'=,, puelado aisiBaidol, o puesado yorew) 38s)]
LON[eA™|[ed,, usul” auyap)

‘uononnsul dod siyy Jo} aresuadwiod 0} SO LA elxa ue indino osfe pue i
19181681 dOL 3y 01 }9elS 3y} Jo do} 8y} Woly aNfeA uinal ayy i
dod 1snw 1| "spremusye 3oels ayj dn ues|d ISnw anfeA [[ed ayl

([(.9°€., LpBua), e TI8s)
(.xdwnfea,, ,2dAy, e 18s)]
A{
\u\ UInal
‘(0 ‘[olspuetado) dx3X) Irea 30au1pul INdino

L\dON\dON:\0% TTVO.\ uinai
(0 == anneusale” yoym) ji

}

[((.6'B., .pouesado esauab, T 1O:puesado yorew)
(W, Jpuelado™Aiowsw, 0 10:pueIado yorew) |[ed)]
W2, usuisuyep)

([(.9'E. .nbuay, e 13s)
(.xdwnl|es,, ,2dA, e 18s)]
£
‘Buins|res uinai
‘(Iylspuesado) TIVALNI =-1asyo doy oy

{((0 ‘[T]spueiado) dx3X) |1eo 10a1pul” Indino
ESE]

{\dON\dON\T% TIVD.\ = Buis|ed
(0 == anyeuwsale” yoym) ji

Pagl1ll

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

thor.md, continued

Al

:uonoNJISuUl 991y} swes ayl Yyum ueis e
Asuy11nq ‘sased asay |[e yoles o} prey Ajgqeqoud s,
"ased snoinaid sy} uey) payedljdwod aiow S} SAWNBWOS

{
. uimal
‘(spueiado ‘,\6% laAV.\)usui_wse indino
{(spuelado *,\ppe S0} - d33d NSOL YHSd.\usul- wse Indino
‘(([z]spuelado
‘[elspuesado
‘apowd ‘SN71d) XU~ uab
‘[g]spuesado
‘apowd ‘SN1d) XU~ uab = [g]spuelado

}

(0 ‘[¥Ispuesado ‘(usui) usui ajouuou Aa.d) Qlummu“”
Jpuelado arelpawwi, g |O:puelado yorew)
(0 dnp™yorew) |

n|d)
(0 dnp™yorew) 18s)
((¥ dnp™yorew)
(0 dnp™yorew) 1as)
((0 dnp~yorew)
puesado [essuab, ¢ |O:puesado yorew) 19s)
€ 10:puelado yorew)
(0 dnp™yorew) |O:snid)
(0 dnp™yorew) 1es)

(... wpurIRdO BIRIPEW

(((wpueIEdO BYRIPBWWIL, Z |O:pURIBdO Yo1RW)
JpueladoIe1siBai”s0), T |O:puesado yorew) |O:snid)
(. wpUeIBdO JR)SIBRI dWi, 0 |O:pueIado yorew) 1as)]

ajoydaad aulap)

zzz|gavy
SOL "HSd

:0jul ajoydaad ay3 Aq pabueyo si siyy i

AKiaav =
uolJed0| alelpawldlul HSd
uoleo0| ajelpawIsiul dOd

11aav

XXX |aay

SOL YHSd

:s1y1 a1 Buiyiswios s)00|
1INsal 8y} pue pajeulw|s Jale| si Jsjulod swely ay L

‘[Y} Ul pajelauab aq [Im sausIsa Jaulod swely e i

‘papaau s ¥9e)s ay} ul uomsod d110ads € Jo SsaIppe ay) UBYM
ppe so} :

({
W\ UInial
‘++19syo_doy Joyr
‘(spuesado ‘,\(peap) ysnd [ewsou‘dod - 4334 N\ \)usul_ wse ndino
}

*u
(T ‘[olspuesado ‘usur) d pesp,,
[((0 dnp™yorew)
(. wpuRIBdO ysnd, z 1O:pueIado Yyo1RW) 18S)
(. wpueIRdO IB)SIBRI dwiy,, T |O:pURIdO YoTeW)
(. wpuRIBdO [RIBUAB, O |O:pueIadO YorYewW) 13s)]
ajoydaad aulep)

({
L\ LINal
‘++19syo doy Joyy

‘(spuelado ‘,\(peap) ysnd rewsou‘dod - 4334 N\\.\usul_ wse Indino
}

(T ‘[o]spuesado ‘usur) d peasp,,
[((0 dnp~yorew)
Jpuesado ysnd, z 4O:puesado yorew) 18s)
(.. wpuRIBdO IB)SIGAS dwiy, T 40:pueIado yoyew)
(. wpURIBdO [RIBUAB, 0 40O:pueIado Yorew) 13s)]
ajoydaad auyap)

:dod ays Buimojjo} ysnd fewsou e yum Ing ‘anoge se awes !

([(.peBueyoun,, 22, me 19s)]
«(peap) ysnd'dod - d33d M.
.(0 ‘[o]spuesado ‘usur) d peasp,,
[((0 dnp~yorew)
(. wpURIBdO JB)SIBRI dUn, Z |O:pueIado” yojew) 18S)
pueladouaisibal dun, T 1O:puelado yorew)
(. JpUBRIAdO [RIBUAG, O |O:pURIBdO YoTRW) 13S)]
ajoydaad aunap)

([(,pabueyoun,, 29, me 19s)]
.(peap) ysnd‘dod - 4334 N\
.(0 ‘[0]spuesado ‘usur) d”peap,
[((0 dnp™yorew)
(o wPURIBAO 10)SIBBIdun, 2 4O:puRIado Yorew) 1as)
((wpueIadO™IR1SI624 " dwn,, T 40O:pueIado” yorEW)
(e wPUERIBdO [e4BUSB, 0 4O:pueIado yoteW) 195)]
ajoydaad aulyap)

‘ysnd ay} Jaye salp ssalppe-Alowaw/iasibal i

ayl a1aym ‘ssaippe-AlowawyialsiBal awes ayy o) ysnd-dod :!
® ‘3] ‘peo|-a10}S SjeIpawIdul ue Juasaidal siy]

ysnd ‘dod ¢

([(.pebueyoun,, 02, me 18s)]
.dod‘ysnd - d33d N\
[((... Lpuesado Ja1s1Bas dwy, z |O:puesado yorew)
(T dnp™yorew) 19s)
uesado™ [esauab, T |O:puelado yorew)
a1~ dwn, 0 [O:puesadoyorew) 19s)]
ajoydaad aulap)

(I(pabueyoun, 09, me 18s)]
Jdod‘ysnd - 4334 W\,

[((.... .puelsado Ja3siBai"dws, z 4O:puesado” yorew)
(1 dnp~yorew) 3as)
.puesadoesauab, T 40:puesado yoyew)
(. wpueIado J31SI601 dw, 0 40O:pueIado yorew) 18s)]
sjoydaad auyap)

i}l @nowal Isne “181sIBal/uonedo| awes ay i
0} dod e Aq pamoj|o} ysnd e Aq pajuasaidal aseo !
1no Ul S| ‘J|as) 0} J|as) sanow Jeyy usul dou v i

dod ‘ysnd ¢
/ /
STT0OHdITd »/
/ /
‘(,uasoyd (1sased) usul Buoim - 10119
[(((e € PUeIRdO yOTRW) JO1~[2GE]) BSN)

(G w7 PURIBDOyYOTRW) 10401 [B0EY)

Pag112

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

thor.md, continued

Al

'\0 XHSd\dONAT SOLN:\(Peap) 40 ‘ssaippe aseq ysnd'dod - g33d I Linjal

‘++1asyo doy Joy)
((epow40 ‘[e]lspuesado) puesado ysnd) ji

‘([o]lspuelado ‘apow4d ‘ININ) XU~ uab = zanpea'sniels 29
‘[e]lspuelado = TanjeA'sniels 29

}

*u
.(0 ‘[olspuesado ‘usur) d peap,,
[(((o dnp~yorew) 40:waw)
(. wPURIBdO YsNd 10" dwn, £ 40:puelado yorew) 19s)
(.. JpueIBdO IB)SIBAI dwiy, T |O:puRIadO YoYeW)
(. wpuRIBdO [RIBUAB, O 1O:pueIadO Yorew) 13s)]
ajoydaad auysp)

:apow40

{
'\2% XHSd\dON\T SOLIN:\(Peap) ssaippe aseq ysnd‘dod - d33d N Linias

‘++1asyo doy Joy}
((epowd ‘[g]spureiado) puesado ysnd) ji

‘(([g]spuesado
‘[o]spuesado
‘apow|d ‘SN1d) xu~ usb
‘apow|d ‘INTIN) X1~ uab = ganjea'sniels 99
‘[e]lspuesado = TanjeAsniels 20

}

*u
(0 ‘[o]spuelado ‘usui) d peap,,
[((((.... .pueIBdO JUITISUOI, Z ID:pURIBdO Yd1RW)

(0 dnp™yorew) |O:snid) 1O:waw)
puesado ysnd 10~ dun, g |O:puelado yorew) 18s)
(. wpueIRdO IB)SIBRI dwny, T |O:pURIdO YoTeW)

(. wpuRIBdO [RIBUAB, O |O:puEIadO YoYewW) 138)]
ajoydaad aulep)

({
\0 XHSd'\dON\T SOLIN‘\(Peap) ssaippe aseq ysnd‘dod - d33d N\ wimas

‘++lasyo doy uoy)
((epowd ‘[g]spureiado) puelado ysnd) i

‘([olspuesado ‘spowd ‘WIIN) X1~ uab = zanfeAa'snieis 29
‘[elspuesado = TanjeAsniels 20

}

*u
.(0 ‘[o]spuelado ‘usui) d peap,,
[(((0 dnp~yorew) 1O:waw)
puelsado ysnd 1o dun, € |O:puesado ydrew) 18s)
(. wpuRIRdO IB)SIBRI dwny, T [O:pURISdO YoTeW)
(. wpuRIBdO ™ [RIBUAB, O |O:puEIadO YoreW) 13S)]
ajoydaad aulap)

"0 == 19s}0 41 Buissiw s1 ,sn|d, asnesaq ‘papasu ale saje|dwa) om] i

XXX XHSd

dON

XXX XHSd TSOLN =
dON <-- 20| Arelodwa) HSd
TSOLN 20| Aresodwa) dOd

*(saIp) Aresodwial S| SSa1ppE/UOITEDO] SIU) pUE i
ysnd 10a11pul dU} Ul SSaIppe ue Sse pasn s| uoledo| dod ayy !

)1 payidwis aqg ued ysnd j0a11pul e Aq pamojjoy dod v i
XHSd ‘'dOd

{
‘(apowi40 ‘spueltado) ysnd yum dod™ xajdwod Indino
‘[Tlspuesado = zanjea'sniels 20
‘[z]spuesado = TaneAsniels 22

}

[((0 dnp~yorew)

(. wpUBIBdO X3)dWO02, Z 40:purIadO yoYRW) 18S)
puesadoajdwis, T 40O:puesado yoyew)
Jpueisado1a)sibas dun, 0 40O:pueiado yorew) 19s)]

ajoydaad auyap)

{
‘(apowd ‘spuesado) ysnd yum dod xsjdwos Indino
‘[t]spuesado = zanjea'snjels 22
‘[z]spuesado = TanjeAsnlels 22

}

[((0 dnp~yorew)
(. wpURIBdO XB3|dWO2,, Z |O:pUeIado yorew) 1as)
(.. LpueIBdO 3|dWiS, T |O:pURIadO YoYRW)
(o wpueIado J31SIBRI dwy, 0 [O:pueIado yorew) 18s)]
ajoydaad auyap)

772 XdOod
22Z XdOd dON
XXX HSd TSOLN
TSOLN <- ARAHSd
(181xoe1S JI T - AAA = AAA) AAA HSd XXX HSd

‘uononnsul dJON e a2ejdai pue dod

19911puUl 8Y} OJUl paAoW g ued (HSd) ysnd auy ‘uonaniisu
dod y0a11pul ue Jo Juody ul s uononasul ysnd ajdwis e Uay
XdOd ‘HSd i

‘(spuelsado ‘,\6% I@AQV.\)usui” wse ndino
{(spuesado ‘,\ppe S0} - d33d NSOL YHSd.\)usul wse ndino
‘([g]spueiado
‘[e]lspuelado
‘apow|d ‘sN1d) xu~useb = [g]spueiado
}

[(((.... Louesado areipawuwi, € |O:puesado yorew)
(0 dnp™yorew) 1O:sn|d)
(0 dnpyorew) 18s)
(((., JpueIRdO BYRIPAWIWI, Z 1O:pUeIado yojew)
(. wpURIBdO ™ IB)SIBAI SO}, T |O:purIadOyoyew) |O:snid)
(. wpuRIBdOIB)SIBRI dwiy, 0 |O:pueIadO YoYeW) 19S)]
ajoydaad auysp)

zzz|gqavy
SOLYHSd =

Tlaav
xxx |gay
SOLYHSd =

Pag113

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

thor.md, continued

Al

Tan[eA’sniels 29) Ji
1+ :(uoponuisui dod 0} 8np AdOD ™ OD) snyess 00 ajepdn «/

(0 “.\IO 9@ ‘dod - d33d W) usul- wse indino

‘0 =191 alojoq dod jul
}

*
T
(((0 ‘[olspuesado ‘((usur) usul~ajouuou™ Aa.d) usui~ajouuou Aaid) d peap ||
(0 ‘[0]spuesado ‘(usur) usui ajouuou Aaid) d”peap)
=salp puelado dod daad loyy),
[(((od)
((e ¥ PURIDdOyoTRWI) JOI~[BQR])
([(0 urisu09) (009)]
Joresadouosiredwos, g Joresado yorew) as|g uayy)
(od) 195)
((u wpURIBdO BANRIBI YOEIS, Z 1O:pUeIado yojew)
(029) 108)
(. wpurIBdO IBYSIBRI dwiy, T |O:pueIadO™ YdYew)
(. wpueIado B|dWis, 0 1O:pueIado Yyorew) 18s)]
ajoydaad auyap)

Indino aJe suonaNIISUl By} UBYM

a|ge|rene 1abuo| ou aie sajou-yreap ay) asnedaq Aressadau
SI SiyL "Indino ay) uy asn Jale| Joj UonewIoUl SIY} i

Buniols pue ‘alsymawios salp 0 puesado yi Bupdayd Jo 10aya !
-apls ay) sey 1| "an} skemfe si ayejdwia) 8y} Ul UONHIPUOD Ay

*(SaIp XXX UaYm) uondnasul T SOLIN ue
ojul pafiueyo aq ued dOd ay) sawnawos "(snyeys Aaid 29 i
uo Buipuadap) panowal ag ued uoRdNASUl | SJ 1 dY) SBWNBWOS !

dON
dON dON
XXX dOd 20y4r

204 < ARA 1S3l i
ARA 1S3L XXX dOd !

‘payidwis ag uayo ued
‘dwnl reuonipuod e uayy pue 1s8} e Aq pamojjo} dod sjdwis v
1591 ‘dod i

({
1.\C2% 3dND:\(Peap) aredwod ysnd'dod - d33d WKL LBl

‘([z]spuesado ‘[g]spuelado ‘apowd|OA ‘FHVAINOD) X1~ uab = Taneasniels 29
‘T =1snlpe oIS pasu asedwod Joyr

}

u
.(0 ‘[0]spueiado ‘usui) d”pesp,
uesado sjdwis, z 40:puesado yorew)
(0 dnpyorew) aredwoo)

(099) 195)
((un wpueIRdO183SIGRI dW,, T 4O:pueIadO Yorew)
(. JpURIBdO [RIBUAB, 0 40:pueIado™ Yorew) 13s)]
ajoydaad auyap)

:apow40

({
5\0 dNDN0 IHSd\22% NdIND!\(peap) aredwod ysnd‘dod - d33d .\ LInial

‘([z]spuesado ‘[g]spuelado ‘epowdIOA ‘THVANOD) X1~ uab = Tanea'sniels 29
‘Z =18nlpe oIS pasu asedwod Joyl

}

*u
.(0 ‘[o]spuesado ‘usui) d”"peap 3P
(usur) d”dwn[paubisun™1asn 029 1xau,
[(((... Lpuesado ajdwis, z 1O:puelado yorew)
(0 dnpyorew) aredwod)
(099) 105)

puesadoualsibas dwy, T |O:puesado yoyew)
(. JpuRIAdO [RIBUSG, O |O:pURIadO YoTRW) 19S)]
ajoydaad auyap)

:paubisun

{
“\2Z% dWO:\(Peap) aredwod ysnd'dod - d33d N uImal
as|e
4A2% IdWD!\(Peap) aredwod ysnd'dod - d33d MW\ Linia)
((M, *([Z]spuelado) TYALNI) d”H3L13T O MO LSNOD 9%
ANI"LSNOD == ([g]spuesado) 340D L39)

‘([z]spuesado ‘[p]spuelado ‘apowdlOA ‘FHVUINOD) XU~ uab = Tanfea'sniels 29
‘T =1snlpe xoels pasu asredwod Joyy

}

.(0 ‘[o]spuesado ‘usui) dpeap 379
(usuy) d”dwn[paubisunTiasn Q22 Ixal j,
[(((.... .puesado ajdwis, z |O:pueIado” yorew)
(0 dnp yorew) aredwod)
(099) 108)

puesado™1e1sibas dun, T |O:pueiado yorew)
(. JpuUBIBdO [RIBUSG, O |O:pURIBdO YoTeW) 18S)]
ajoydaad aulap)

:uoisIan paubs !

KK dND
20| Arejodwa) HSd
ARK AND < 20| Aresodwial dOd

‘payiidwis aq ued ‘aredwod ay) Jo HSd ¢

1sJ1} 8y} Se uonedo| Aresodwal awes ay) 01 S| JOd dY} alaym
‘uononusul aredwod e Aq pamo||0} (dOd) uononasui dod v
dWD 'dOod

{
'\2%
XHSd\dON\T SOLW!\(Peap) 40 ‘ssaippe aseq ysnd‘dod - d33d N\ Linidl

‘++19syo doy Joyy
((apow40 ‘[g]spuelado) puesado ysnd) y

{(([z]spuelado
‘[o]spuesado
‘apow|d ‘sn1d) X1 usb
‘apow40 ‘INIIN) X1~ uab = zanjea'snjels 29
‘[e]lspuesado = TaneA'snlels 22

}

.(0 ‘[o]spuetado ‘usur) d pesp,,
[((((.... .puesado U ISUO, Z |O:purIadOYoTEW)
(0 dnpyorew) |O:sn|d) 4O:waw)
(. wpuRIBdO ysnd 10~ dwy, € 4O:puelado yorew) 1as)
((u wpurIBdO IB)SIBRI dWiy, T |O:pueIadO™ YoYew)
(. wpueIadO [RIBUBH, O 1O:pURIBdO YoJRW) 13S)]
ajoydaad sunap)

&

Pagl114

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

thor.md, continued

Al

([(.G. .wBua], e 19S)
(.lrea,, ,2dA, me9s)]
{
1\¢% dOd.\ uinai
as|@
“\G% SOLIN'\Z% dOd.\ uInial
(0 < ([s]spueiado) TWALNI) 4
(T - (Iylspuesado) TIVALNI) LNI"NIO = [g]spueiado

‘(Iy]spueiado) TYALNI =-19sy0 doy Joyy

‘(0 ‘[tlspuetado) dx3x) I1ea 308u1pur Indino
ESE]

(spueiado ‘\dON\JON'\T% T1vD.\) usul wse ndino
(0. ‘[Tlspuesado) INIVHLSNOD Vi.LX3) It
(0 “.\sonu ‘anfeA” e - d33d I UsulTwise Indino

Jpuelado arelpawuw, ¢ |O:puetado yorew)
(e dnp~yorew) |O:snid)
(. wpuRIBdO UB)SIBRI"SO0), € |O:pUeISdO yoew) 18s)
(((.... .oueIadO JRlBUSB, Z |O:pURIado” yoTeW)
(s wpuRIBdO™ AtOWBW,, T |O:pURISdO™ YoTRW) |[BD)
(. wpuRIBdO IB)SIBAIdO), O pURIBdO” YoTew) 18S)]
ajoydaad aulap)

X SOL

T-XSOLN T- SOLN =
X dOd X dOd
dON <-- dON

dON dON =

un} 1vo unp1Ivo -

‘suonannsul SO LN omy 8y Buluiquiod Aq sbuiyy Ayjdwis ued am
‘uononAsul SO LN [eulaiul Ue surejuod os[e snfeA” |[ed ayl sy
‘uonanisul SOLN ue Agq pamojjo} Ajlensn si anfea” |[ed v :
Sojw ‘anjeA” |[ed i

({
L\dON.\ uInial
/x :P3|Il} 89 19ASU ||IM 10|S AB|SP PU0ISS BYL «f

‘(spuesado ‘,\0% dOd.\) usul” wse ndino
I+ 1o|s-Aejap auy ur dod ays INdINO «/

‘(0 ‘[e]lspuesado ‘[y]spuelado) dwnlpuos indino
‘(spuelado ‘,\2z% 1S31.\) usul_ wse Indino

(0 A0 1591 ‘dod - 433 W) Usui~wse Indino
}
.((((0 [eIspuesado) dxax ‘(0 ‘[o]spueiedo) dx3x) d fenba™xu 3%
W3 == ([z]spueiado) 3000139 B
W3 == ([olspuesado) 3000 139) I

(apowqlOA ‘[z]spueiado) pueladoialsibaldo)
(epowqlOA ‘[o]lspueiado) pueladoiaisibal~doy)
[(((od)
(e e 7 PURIBdOYotRW) JBI~ [BCR])
([(0 umIsu09) (099)]
Joresado uosuredwoo, g Jojelado yorew) asjg uayy)
(od) 305)
(.. LoueIdO BANRIRI NORIS, Z |O:pueIado Yorew)
(099) 108)
(s puRIBdO UBISIBBI dun, T 4O:pueIadO Yo1RW)
(o wpuRIBdO BJdWIS, 0 4O:puRIado YorRW) 138)]
ajoydaad aulep)

*ased sIy} Jo aled saye) aye|dwa) 8y} Ul UOHIPUOD Y| "Sapow !
auyoew Juaiayip yum puelado swes ay) syuasaidal g pue !

0 puesado "a'1 ‘(sjqissod ng Aj@yijun A1an) buiddod ase

se puesado swes ay) Bunsa) ase am i si 1abuep Ajuo ay L
:Buily 10is-Aejap e Ajuo si siy) ‘apow4d i

([(.pabueyoun, 29, me18s)]
«f

L\dON.\ winai
Jx :P3|II} 87 JaABU [|IM 0[S Ae|ap Pu02as dy] «/

‘(spuesado ‘,\02% dOd.\) usui_ wse ndino
ESE]
{(spueltado ‘,\T SOL.\) usul” wse ndino
(saip puesado dod daad 1oy yi 8s|9
(0 .\dON.,\) usul_ wse ndino
(1se1 a10j9q dod)
/x 1591 @Y} 810}aq papasu sem uonanisul dod ayy ‘eniy si
1591 al0joq dod j| *(a)qesaaid) T SOLIN Ue 0l)l 95w ued
am salp puesado dod ayy J| 1ojs-Aejap ays ul dod ay} INdiNQ «/

‘(0 ‘[e]lspuesado ‘[y]spuesado) dwnlpuod indino

‘[z]spuesado = TaneA'sniels 22
MOT4H3A0 ON ™00 =| sbeyysmeis 0o
‘1INITSNLVYLS 20

[« :SN¥EIS 20 arepdn 4/

‘(spuelsado ‘,\2z% 1S3L,\) usul” wse ndino

{
‘T =1sa) aloyaq dod
‘(spueltado ‘,\2% 1S31.\) usul” wse indino
‘(spueltado ‘,\0% dOd.\) usul_ wse ndino
}
(([o]spueitado ‘[z]spueiado) d jenba™xu) i
/+*(BuiLIOU UM [IM BM pUE) 1S8) B} 810437
uonoansisul dod ay3 Indino 1snw am ased jeyl uj
'S90p 153} 8 se puesado awes ay) sasn uondnsul
dod ay} J1 %982 ‘papaau S| UOIONIISUI 18] VY «/

ESE)

}
((((zonrea'snyeis 29 ‘[g]spuesado) d”jenba™xu %%
0 =i gon[ea'sniels 29)
((Tenren'snyeis 29 ‘[g]spuelado) d [enba™xu %
0 =i TeneA'sniels 29)) i) §i
/x :PBPAAU SI UONINASUI IS8} DY JI %I8YD 4/

{
}

(WNNDIY dWL == (TenfeA'sniels”92) ONOIY B8
(TanfeA’snieIs 22) 4 93y %

‘[olspuesado = Tanjea'snyels 20

Pag115

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

thor.h

A2

/x WBLI S|9AS] JO JqUINU BY) JUNOD)l dYeW am

2104218y} ‘AIBUOIM S|aAS[|lIdST10a11pUl, SBINSEAW PROjSI HUJ, +/

T 934 VILINITON HOHL duyapy

Jx"uonouny e Bupisiua uaym siaysiBal o} sisjewe.ed ay) Jo
suononuisul Adod Aredassauun Jgiyul 0} JUem am 2 UOROUNY, U] «/

JAOWIO 1SISYD HOHL duyapy

/+ "9POWIS JO pealsul apow|d
JUBM B\ "SYIOM IS9sed Aem ay) abueyd o) pey am 2 WIS U] x/

¥ SSANISUVAS SANTVA ISYD HOHL dulyap#

/x "S9SED
9S8y} Ul S9911-YydUurRIQ U} SINOAR) JIWI| JOMO| i "Saljue pasnun
0 10| & yim parelauab aq o} sajgel-dwnl abiny asned ued QT Jo

anjeA v ‘paads uey) 1ayjes 9zIS-apod |[ewsS INOAL) 0} JUBM 8M JOUL UQ «/

/+ "paads uey) Juepodw aiow Si 8zIs Ji

areudoidde aq ued anfena Jajjews v QT SI }neyap ayL "s|qer

-dwnl e ul pamojje sases usamiag deb wnwixew ay) anlb anjea

8y "SeaJl-ydueiq JO peslsul uasoyd aq pjnoys sajqel-dwnl uaym

auILIBIdP 0} QTOHSIYHL SINTVA ISV YIM UORRUIGWIOD Ul Pasn SI 1|

‘padnponul Usaq sey SSINISHVAS SANTVA ISYD YOH.L 0I0BW MAU B DJWIS U] +/

_ _ _ ~(WNND3Y dOL == (ONDFN)) «/
T(OND3H)d ONOIH OdNI"HLVIA IAYISTUd HOHL suyeps

Jx " (3)1dwod 3,uom) 3iom Jou
S20p 1ING d” ONOIY O4NI”HLYIA IAYISTHd Pasnh aney pinod am
"13)199 iom uoneziwndo ajoy-daad ay) axew o}

‘sajou ojul-yreap anlasald 0y ssed-zdwnl ay) Juem am 1oyl uQ «/

(0 == 00| 2IsBq™ U) INIFINOD FHO439 JOH.L duyap#
{$)00|q JISeq ™ U JUl UIdIXd

/x "19A unJ Uda(q ,usey ssed-auiquiod ay ey} aredlpul o0}
918y pasn S1 1| "0°MOJ} Ul anjeA s} 196 ,S20|q 2ISeq U, /

/ /
Jxx HOHL J0d 44NLS VHLX3 x/

/. /

‘() puesado und pIoA ulaIxa

‘() JeyoIndino proA uisIXd

‘() 1950 do) IOyl MU~ 18S PIOA UIBIXS

{() nose Indino pioA useIxe

‘() xay Indino pion uiaxa

‘() 09" arepdn~ 220U PIOA UIBIXD

{() 1s9se2 INdINO PIOA UIBIX®

£() [rea " 1081pul INdINO PIOA UIBIXD

‘() dwnlpuosIndino pioA uiaIxa

‘() ysnd yum dod xajdwoa Indino pioA uiaixa
‘() dod™xa|dwosIndiN0 pIoA UIBIXD

‘() ysnd~xajdwod IndiNo pIoA UIBIXD

‘() d”"peap jul uiexa

{() @ouanbas jyse Jwa ul wIBIxe

{() @ouanbas™aAEINWIWO ™ UOU™ JIWS Ul UIBIXS
‘() @duanbas™aAnEINWIWOI JWS Ul UIBIXD
‘() @duanbas™gns Nwa ul uIBIXd

‘() @ouanbas™ ppe 1Wa Ul UIdIXd

‘() @2uanbas aAoW HWS Ul UIBIXD

‘() spuesado™ dems 328y Jul UIBIXS

‘() dod wa pioA uiaxa

{() ysnd 3wa pIoA ulAxd

‘() d"dwn["paubisunT1asn~ 029 1Xau Ul UISIX
‘() puelado dwn[T)0a11pul JUI UISIXD

‘() pueiado~ aAie|aI 3JBIS JUI UIBIXD

‘() puesado xajdwod I UIBIX3

‘() pueladoajdwis I uIBIXd

‘() puelado—dod jur uieIxa

‘() puelado1as1Ba17S0) JUl LIBIXD

‘() puesadoJaisiBaldo) Jul uIBIXa

‘() puesado13s16a1 dwy Ul uIBIXd

‘() revey Joys pIOA UIBIXd

‘salp_ puelado dod daad oy} Jur uisIxa
‘1snlpe oe)s paau” aledwod oY) JUI UISIXD
‘reT19syo” doy 1oyl JUI UIBIXD

19s)jo” dolIoy Jur uIBIxa

/x 9'10U} @3S ‘OjUl DIOW 104 4/

/. /

Jxx 0'10Y} 10} S[euIaIxa pue sadA10101d s/
/. |

/+ 19edW0o2 8pod pajessush
8y} sayew SIYL 19S UoNINSuUl PajusLio ¥Jels e sey)l
‘10ss3201doIoIW paseq Jas|Bal [euoiipel} 210w e Jo peajsu|

‘suonedljdde Areyjiw pue aseds s|qepuadap

Aybiy 1oy paubisap si 1 "epy ul usnum sweiboud jo

uonN2aXa aU J0} pue swalsAs awi [eal ul sisindwod pappagquie
1o} pajebuel si)| *OSIY g ZE ® SI Jossadoidolaiw Joy L 8yl

*10S$9201d0I0IN 99edS UOSSILT gees ayl ‘oYl «f
/x "UOISIBA Joy] “J3)idwod NND 104 duiydew 1abiel Jo suonuyaq «/

Ix

M

uoisIaA MeN STTTS6 1L 'OH 00T =
M

sylewas ayep Aq pasIndY x

STTTS6 /ISiAbpun sewoy] ‘uossreuuns AlleH Joyiny
M

*
(saouspuadap oN) Japdwo) «

*

*
(sa1ouapuadap ON) BuIYde

*

*

*

SUON O/l x

*

*9|l} 930S AI19AS 1SOWe Ul Pazi|nn ale SoJJew ay L M

“NINg st J9)1dwod dayy uaym DD NN Aq pasn *

abesn «

uonouny s Jo uondudsap B SMO||0} 019eW Y YA «
suonesadQ «

*0)9 9zIS pIoMm ‘sialsiBal *

[eusaiul ‘seapow Buissalppe se yans “JoyL ul Sjurensuod M
aJempuey agIISap Loea YdIYM SOIdBW JO SISISUOD d|l a1us ayL M
asodind «

*

%

Yoy *

+

Pagl16

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

d

, continue

thor.h

A2

© YNMm Jazi[enjur ue s| uonuyap sy -sbeyy jabue), ul
S}Q Jea|d pue 13s 0} suondo puBWILWOD JO SaWRU SaURSP 0JoeW SIYL

‘sbeyy 1abie) 1 ulsIxa

/x iluasaid aq pinoys Bey SIyL «/

L(1ounauiyoewy- (Joy)ndoy- ~Ioyi a- Jowyd-, SINI4IATA ddO duuap#
/x "dulyoew 1abi1e) siyi Joy J0ssadoidaid ayy ul suyapald 0) SBWEN

/ /

Jxx 1398VL INIL-NNY s/

/. /

IVIOAAS D094IT MNIT duLap#

Jx 1d1I9S p| 8yl 8snJuod Ajuo |m 3 ‘siuswinbie aiow Aue anIb
LUOP ‘D3dS™AIT U3 yim sBuIyl [[e S|puey Ued Ja3UIl-I0u} YL «/
/x "(s20p Ajjewlou ¥ se) Jaxul| ayy o3 ssed o} suondo -
aresauab Jou pinoys ,206_ ‘osfe {yoseas ayy op 0} Jaxul| 3y} ||8}
01 ,206]-_uawnbure ay) Buissed ueyy Jayres ‘puey Aq e-006qI|
Areiqi| a3y puly pjnoys ,006_ 1ey) Buiuesw oloew siy) suyaq «

w O3dS INHLYVLS duyapy

1« ‘Apondxa

pauonuaW aq jou piNoys ,[qo oMo, " 03dS dI. Aq payioads
1pgns ay ul f[go’ oo o)y 193lgo ay) spuly JaNUI-I0Y) YL «/
Jx "dUl| pUBLLLIOD Jaxul| 8y} Ol

*,0°0U9, 31| ‘a|y1elS © 0} 92UdISAI € 93e|d 0} UBYM pue
moy weiBboid JaAup DD NND 3y} |19} Teyl JUeISU0D BullS D «f

w O3dS™0094I7 duyap#

Jx 1d19s p| 8yr asnyuod isnl

pInom pue papaau jou s1,03dS 009417, " 03dS™ I, Aq payoads
Ki0y03.1p dY» Ul [go-006q| Areiqi] a4 SpULy JUI-I0U BYL «f

/« ‘paYIoads si uondo

Jpaseys-_ayl ssajun uaxul| ay; 0} ,096]-_ Buiis sy sessed 1eyy

JIneyap e sapinoid JaALP DD NND 8y} ‘pPauljap 1ou Si 01dew Siy) §|

03dS dI. 4o anjea
3y Jaye pue a10}3q Ylog padeld SI JULISUOD SIY] "dul| puRLWOd
J19xul| 3y} ojul era96q1| 01 9ousia)al e 8de(d 0} usym pue

moy weiboud JaAup OO NND Y} S|[8} Jey JUBISU0D Bulls 3 JBYIouY «/

0%, O3dS gl duyapy

/+ "PUBWIWIOD
Ui, 8 03 suondo |- 0} SIY} WBAUOD UaY} [|iM 1dLIOS | 8y L
‘soxya1d ajyuers ul A1010a.1p yoes 1oy uondo - ayy
anb D34S gIT rewuou ayj Jo peajsul 0S 'safl [qo’, yum pajjL
S8110198.Ip JO WO} B} Ul Salrelq)| sjuawa|dwl JaNuI|-10y) SYL «/
Jx *,9'006_998s "a0e|d [ensn ay} wouy Areiqi| O pJepuels
ay) speoj Jey) papirold S| Jnejap e ‘paulap Jou Si 01dew Siyl J|

“J3)UI| 8Y} 0} UBAIB puBWIWOI Y} JO pud 8y} e pasn sI,03dS” dI.
“19)ul] ay1 01 ssed 01 DO NND Joj suondo ol DD NND 01 3AI6 noA
suondo are|suel} 0} moy Ajoads osfe ued 3] “Jayul| 3y} 0} ssed

0) suondo weiboid J1aAp DD NND 3yl S|19) ey} JULISU0d BULIS D VY «f

.S9A. SIOVAS AIAN” STHOLIMS dulap#

/x “Juawnbue sy pue uondo ,0-_ 0 - 8y} usamiaq adeds e
spaau Jayul| 3y} i Aidwauou s ydiym uoissaidxa O panjen-buiils v f

/. /

Jxx HIANILA </

/,]

0o, X144NS™103r90 auyap#
[« "12MUI| pue JB|quIasse uapO aui Aq pasn xiyns ays st ,[qo",

‘mojaq Hed Y3AIMQ syl 01 Buojaqg ‘uoluido uno ur ‘pjnoys
pue (9996) D9 Jo ued JaAup 8y} ul pasn Si oloew ay L
*(oueds) auiyoew 1soy ay) 1oy Jou ‘}9bire} Ino 1oy Xiyns
193(qo ay) abueyd 0} Juem AJUo am asneIaq PPO JeYMaWOS SIY}
puly 3 Y SIY} Ul Jou ‘(3|Y-Lx) BJY ,BLU0d, By} Ul
pauyap ag pinoys oioew siy) ‘sabed ojul ay) 01 BUIPIODDY 4/
/x "SI} 98[O 10} XINS BY} SB ,0°_ BSN [IM DD NND
‘0JoeW SIY) BUlap 10U Op NOA J| *dulydew INoA uo sajy 10alqo
1o} xins ayy bunuasaidal Buys D e aq 0} 0JoeW S|y} dURaQ «/

/. /

1x371d SIHL NI ONIONOT3d ATTVNLOV LON 1N9 AINOILNIN SONIHL x«/

/, /

() s1opuedxe JuITIoy) SYIANVIXT LINI duyap#

J "UoneZI[ENIUI
|9AS] UOOUNY OP O} ‘UOIOUNY INO [[eD 0} HWS Ul (|91 «/

NOILJO T ¥3L14V 30VdS duyapy#
/x 'suondo yons Bunelauab uaym - 1aye adeds e nd 01 D9 |191 ¥/

‘(,u\uonouny ubife MO VLVAN. ‘(3711))puridy
\ (0 == () @z1s"jood386) yi
\(IWVN ‘F14)XI438d NOILONNS LNdLNO WSV dulap#

J« "(SNQ Z€ a1e 8se UNO Ul YdIym s8lhq
0} jJulod s1ajulod) Jajulod [ewlou e Ul Ssalppe S) asn 0}
a|qissod aq jou ||Im) ‘BSIMIBYIO "Arepunod (plom) Nq zE e
0} paubife sI suonoUN [[e 3INS aYew 0} Paau M JoYL UQ «/
/+ “INdIN0 SI uonouny e oy |aqe|
Buirels sy a1ojeq 1snl Buiyiewos sindino rey) JuUsweIels J W «/

/. /

lxx STOVd OdANI NI ONISSIN SONIHL x«/

/, /

T S434 UVA dNXI4 YOHL auyap#

Jx BN & A|geqold “1a1ewered Buoim ayr yum pajes si
19s ™ a|buls, uonouny ay} ‘o'uonduUNy Ul TSy Jen” dnxiy, Uj f

X4 1LO1S” AV13A HOHL duyap#
/« S10|S-Aejap Bujuiaduod ,2°61081, dNpow Ul XIj Bng 4/
1SNOO HO4 YO3HO AvOT13Y HOHL duyap#
/x "©SBJ SIY] 1034102 0] Bp0I sa|qeus
LSNOO HO4 X03HO AVO13d YOH.L 0IoeW ay L "uoissaldxa sy} ai0jaq LSNOD &
2 pinoys 813y ‘ssaippe Alowaw - (LNI" LSNOD ‘434 108WAS) SN1d
© UY)IM 3Sed ay) Ul S|ie} Sy Juelsuod juajeainba ue o pabueys

aq ued Hal-opnasd e ‘0'peojal Ul ,SSaIppe” SPeo|a. pul, U| /

AvOT3Y LINITY¥3LNIOd INVHH AYVH HOHL duyap#

Pag117

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

d

, continue

thor.h

A2

J "9pOW g 3sN 0} ‘piom T uey} JoBBIg SIONAIS [[e JUBM SM JOYL UQ «/
/x "pawnsse si,(apowid) 37ISLI9 IAOW 139,
‘pauyepun si o1oew siy) §| ‘sazis sreudoidde syl yum suolun
pue $aINJoNJIS Joj Pasn ag Ued JS|[eWS JO 3ZIS S|U} JO Sapow
aulyoew Jabajul |l “pasn aq Ajrenioe pjnoys ey} spow aulydew
1abBajul 1sabue| ayy Jo S)Q Ul 9ZIS 3y} 40} uoissaldxa Jabajul Uy 4/
Z€ AMVANNOST MOVLS suuap#
/« "Paubife yeymawos xoels ay) doay s1o7 «/
T INIFANODITY LOIMLS duyspy

1« "eyep paubieun uanlb usym
3IoMm 0] [re) Ajlenioe ||IM SUONINIISUI SBAOW JI 0ISZUOU SIU} 18S «/

Z€ INIWNDITY d1314~ 1LS3D9D19 dulap#

Jx "SI} Uey} Jopunol paubife ag 0} SJuem p|aly BINJINIIS ON «/

Z€ LNFWNDITY 1S3991g duyapy

J+ "SIy} ueyy Jepunou paubije aq 0} sjuem adA) e1ep ON /

T SHILLVN IdAL @1314118 00d duyep#

Jx "19NS By Joj Juswubife Jul_ $8210) Ul S PaIeosp PIBYI] VY «/
Z€ AYVANNOG 3ZIS™ IUNLONYLS dulap#

Jx "SIUY} JO 9|dninw © 8¢ ISnwW azIs S,21NoNAS AIBAT 4/

Z€ AdVANNOSY a131d” ALdWT suyap#

[+ "RINPPNAS B Ul 0 : U1, I3Y. PIBY JO JUBWUBINY

Z€ AdVANNOSY NOILONNS duyapy

/¥ "uonduNy e JO 8p0d 3 40} (xSNCy UI) ATepunog UoNed0|| «/

Z€ AYVANNOY INYVd duyapy

Jx "SI JuawnBire ul syuawnBire Bulols 10j (xSHQy UI) Alepunog Uonedo||y «/
Z€ 3ZIS "3LNIOd duyeps#

/+ “MO[8(q pauljap ,apolld 0idew ay) os|e a8s
“181u10d © JO SHQ Ul LPPIM «/

T QHOM ™ ¥3d_SLINN XVIN auyap#
T QHOM ™ ¥3d SLINN suyap#

Jx "(S91AQ) SHUN U ‘PIOM € JO LIPIM +/

2€ QHOM ¥3d_SLig_XVIN duyap#
2€ QHOM ¥3d Slid auyap#

Ix ._wum_mm‘_ aulyoew e Jo SjusU0I 3y} SI YdIym ‘,pIoMm,, e JO SHq Ul YIPIA «/
Z€ LINN"¥3d SLig auyep#
/x “Hun wmm‘_oﬂw d|gessalppe ue ul slq Jo IsquiNN y/

0 NVIONT 919" SAHOM duldp#

/x “patequnu
1S9MO| BY} S| JaquiNu PIOMI}NW © JO pIOM JuedlIUBIS ISOW Ji SIY) dulad «/

0 NVIANT OIg S31Ad duyap#
/x "P@Jaguinu }SaMo| 3y} SI PIOM JO 31Ag Juedliubis 3sow Ji SiY} auyaq «/
0 NVIONT 919 SLid auyap#

Jx "SPI3Y-NQg pasaquinu uo ayelado eyl suondNsul Ul
paJlaguinu 1Samoj si)i JUedLIUBIS 1SOW Ji SIY) dulyaq «/

/. /

Jxx 1NOAVT IOVHOLS x+/

/, /

d4 LNOHLIM 9Ng3a NvO duyap#

/% "19jutod awely
© Jnoyum uana pawlopad ag ued BuibBngap Ji o1oew SIYy) duyaq «f

{

\‘0 = Jajulod awely ywo” Beyy

\ ‘0 = dod " Jajep Beyy
\ }
\(T3A3T)SNOILIO NOILVZINILLO dulyap#

/« ‘Bulurem pione 0} Mou i 18Sal 0S
‘SNOILJO™ IAIYYIAO Ul pajeAnde st iajuiod awely o bey »/

{
\ ‘0 = dod " 1ajop Bey
\:(.pamoje Jou dod-iajap}-,)Bulurem
\ (dod™1oyop™ Bey) 4§
\ ‘T = Jojuiod swely Hwo ™ Beyy
\!(,ivAnoe SsAeme ‘papaau jou Jajulod-swely-}woy-,)Bulurem
\ (4aujod awely Nwo™ Bey) y
}
\ SNOILAO 3AIYHINO duyap#

Jx "19151B21-dO L INO JO [013UOD BSO] [|IM BM
pauayap si dod Aue yi ‘dod ™ 1ajep™ Beyy :Bumasai -
“19jujod awrely ayy Jo
pu 196 1snw am ‘Jsjulod awely Nwo Beyy :Bumas -
:Buimol|o ays J0 818D S3XEI SNOILO IAIMHINO

Jipusy#

(T 3Lva 'O4NI"NOISHIA “u(S% ‘S%) . ‘119Pis) pulid) NOISHIA LIDUVL duyap#

as|o#
(O4NI"NOISHIA “.(S%) .. ‘119p3s) puld) NOISHIA LIDUVL duyapy#
(T 31va)pauyepi i

.0°0°T UOISIaA “J8)1dwoD $S01D D JoYL, O4NI- NOISHIA dulap#
/x NOISHIA LIOUVL, dulap pinoys uondiosap aulyoeu
A1an3 "a210yd uonduasap aulyoew renaned ayy Buiquasap

Buis e J1apis_ uo Juud 0} JUSWIAJEIS D B SI 0I0BW SIUL «f

{11Inv43a@ 1394vL . B
\ SFHOLIMS™ LIDNV.L suyap#

JIpusy
0 ._.I_D<n_m_n_ll._.m_0w_<._. sulsp#
11Nv43d 139dV1 j8puji#

Jx"uondo puewwod yoes Joj buidnoibans

Pag118

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

d

, continue

thor.h

A2

s19)s16a1 Jo SSBD Ay SI SIYL "(SOIY TV Se yons aweu Jayjoue
10} Sel[e U 10) SSEJO B JO BWeU 8y} aq ISNW SOTY TYHYINID sweu ayL

"s1a1s1Bal ou urelud pue
SOIY~ ON paweu aq ISNW SSE|I Jayloue ‘SSe|d dUO Uey) alow i a1yl J|
‘sfial pley ||e apnjoul pue SOIY 1TV Paweu ag skemle snu Sasse|d auy} Jo aUQ

'sjuelsuod Jo sabuel auyap os|y “uonduasap aulyoew
3y} Ul syurensuod Jalsibal 1o} s1v)siBal Jo Sasse|d ay) aulaq «f

1, /

Jx SASSV1O SHALSIOTY x/
/, /

/ /

xx 1915169 SOBIS xx 'SHALSIOFY x+/

/ /

/, /

Ixx suonouN Jea xx 'SYILSIOTY x4/

1, /

T (230N ‘TIAOW)d I1gvaIL SIAOIW duyapy

/+ "INdINO 1981102 10} O B ISNW Sy} uay) ‘Bal prey Aue 1oy
‘Z3A0N pue TIAOW 10} SaN[eA JuaIayIp 8anpoid pNod YO IAO ONOIY QHVH 4
"¢3Ad0OW |pow sey auo pue T3AOW SpOowW sey sauo usym

sJo1s16a1 opnasd omy an 01 eapl poob e S 1 JI T SI SN[eA «f

(opow40 == 3GOW Il spow|d == IAOW)
\(3AOW ‘ONDIU)MO IAON ONDIY AYVH dulap#

/' AA0 SPOW-sUIYILW JO BNfeA € pjoy ued ONDIY JaisiBal prey Ji TSI anfeA «/

(QYOM™¥3d SLINN/ (T - AQHOM ™ ¥3d SLINN + (3A0W) 3ZIS"IA0OW 139))
\ (300N 'ONDFH)SOIFAN ONDIH QVH duyaps

1+ "s1a1s1621 Buo| [e1oads Ul Sapow uread 1oj SS9 8g ued Ing
JAOIN Spow Jo anfeA e Jo spiom ul yibus| ays AjLreulplo si siyL
"3AOW apow Jo Buipawos pjoy o}
OND3Y Bai 1e Buntels papaau shiai prey aAINI3SUOI JO ISGWINU WINIBY «/

/. /

Ix+ SIOISIBAY Ul SON[BA 4+ 'SYILSIOTY x4/
/

/ /
Jxx 19pI0 UOREIO||V xx 'SYILSIOFY x4/
/

T NNNDIY dINL dulap#
0 WNND3Y dOL auyap#
I+ B3I-dOL 8U} 10} BUYBP UMO INO +/
{T ‘T ‘1 '1} S¥3LSID3Y @3ISN 1IVD duLdp#
/x "I| NOA se sia)siBal Jayio Auew Sse apnjoul ued NoA ‘yey) wolj apisy
‘pessed ale sessalippe anjeA-ainjonis alaym Jaisibal ay) pue
pauin}al ale sanjeA alaym sia)sifal ay) apnjoul Isnw Jaye| ay L
‘panes Bulag Inoyum pasn aq ued ey sialsibal
Aue os[e pue SYI1SIDIY AIXIH dYI SPNJOUL ISNW 3SBY L

"S|[BD UONIUN) SSOIJE B|e|leAR JOU SIa)SIBaI 10} T

{T'T ‘T ‘0} SH3LSIO3Y a3XId duyep#

/+'d4'SOL'dL'dOL

‘|rey ||IM J8|qIBSSE By] pareulwi|d Jou S I
pue ‘auoAue aAey 1,uop am Ing ‘a1ay papnjoul aq isnw Jaisibal
dd 8yl 1aisibai Jayuiod yoels ayy isnl s 1a1sibal-SO L ayL

"uondNAISUI-dOd e s! 133siBal siy) woyy peo| e ‘UoRdNISul-HSd e
sjuasaldal JalsiBal sIy} ol 810)s v oe)s Jo doy Aretodwa) e S|
Sy ‘suononJisul puedxa ul Ajreusaul pasn si Jalsibal-dINL ayL

‘suoneziwndo
ajoy-daad yum areul 0] JaIses a0y} pue Ajuanbauy
al0W Pasn INg 10Is 39els Jayjo Aue axi| sl st 4aysibal
-dOL ay1 ‘pud ayy uj "yum Aeyd oy Ja3siBal auo 1ses| ye aney
31 UByM Janag SHI0M DDD Tey) SWass 1| oels 8y Jo dO1 8y} uo
sapisal Jaisibal siy | “181siBal-4dOL ay) ‘uoedolfe Jaisifal Joy
pasn aq ued yey) ‘1a1s16ai [elauab auo aney AJuo am ased INo U| 4/
/x "Jojeo|[e Ja1siBal ay) 4o} s|ge|iee Jou ale pue
sasn pirepuels aniseAlad aney Jeu) sia)sibal 10y T

¥ ¥3LSIDFY 0ANISd LSHIH duyap#

/x "sla1sibal [esauab palapISUOI Ajjewiou 10U e ey} asoy) Uana

‘s1aquinu uaAIb ag 1snw noge smouy J9|idwod auyy yey sialsibal ||y

"¥3ALSI93Y 0AN3ISd LSHIH Mojaq isnf 03 0 woy

J9)1dwod ay) Joj siaquinu paubisse ale siaisiBal atempiey ay |
‘s13)s1Ba1 arempuey [enioe Jo JaquInN «f

/. /

Jxx soiseq 191sI68Y xx ‘SHUILSIOTY x/
/

GT0 YO 13DHVL dulyap#

710 44 1IDOYVL dulyap#

€T0 LA 13DUVL duyap#

2T0 ININMMIN_LIDYVL duyap#
TT0 gVL1 13D¥VL dulap#

0T0 SE_139D¥VL dulap#

£00 1139 LIDHVL dulyap#

Je A\ PUR AU O e
aouanbas adeasa 10} anfeA Jafiajul ay} 104 UOISSDIAXS JUBISUOD DV «/

T YVHO @3NOIS LINV43A duyap#
/x "0 Se as|a ‘paubis aq }nejap Aq pjnoys Jeyd_Ji T Se Ssiy) auyaq «/

2€ 3Z1S"3dAL 319N0A ONO dulap#
2€ 37IS”3dAL 318N0A dulep#
2€ 3ZIS"AdAL LVOTd dulap#

/« 'SNQ € 01 SadAl anjeA-[eal |[e Jo 9IS 3y} 13S 0S[e S\ «/

2€ 3ZIS"AdAL_ONOT_DNOT dulapy#
2€ 3ZIS IdAL ONOT duyap#

2€ 3ZIS 3dAL LNI duyap#

2€ 3ZI1S IdAL LHOHS duyap#

2€ 3ZIS AL "VHD dulyap#

/x "SNQ € 01 sadA} Jabajul |[e Jo azIS ay} 189S dM JoYL UQ «/
/. |

Ixx LNOAVT AdAL x«/

/, /

(spowd) 3ZISLIg IAOW 139 IZIS”IAOW QIXI4~ XVIN dulap#

Pag119

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

d

, continue

thor.h

A2

x/

N /
[xx N0AeT BWeld «ONITIVO ANV MOVLS x«/

P /

(NNNDFY dOL == (oubai)) (ouBal)d XIANI"HO4 MO ONOIY duyep#

(NNND3Y dOL == (oubai)

\l WNNDIY YILNIOd FWVHS == (oubai)
\l WNND3Y HILNIOd MOVLS == (oubau))
\(ouBa1)d"3SVE Y04 YO ONOIY duyap#

/+ "9'20|[e-[ed0] ul suaddey yaiym ‘pajedolie usaqg sey

Jaquinual”Bal aouo Ajuo ayes are Aay) ‘Jaquinual~Bal asn Aay) aouIS

‘Bal prey a|genns e 0} pajedoje Apuanind Hal opnasd e 1o

sse|d a|qenns auy Jo Bal prey e st ONOIY JI Ajuo osazuou anib AsyL
“1Jaquinu Bas opnasd Jo piey e st ONOIY Jey) swnsse asayl

(aHOM™¥3d SLINN/ (T - QYOM ™ d3d SLINN + (3A0W) 3ZIS"IAOW ™ 139))
\(3AOW ‘SSVY10)SOIUN XVIN_ SSVY1D aulap#

Jx "SSV1D SSe|d Jo JaisiBal B ul JAON Spow Jussaldal 0} papasu
s191s1691 SANNIISUOD JO JBCUINU WNWIXEW 3Y) WINISY «f

(SSV10) (SSY10'X)SSY10 AvO13y d3dy3434d duyep#

/« 'SSE[D 9AO1ISaI 8I0W © asn 0} a|qelayald SI J Sased awos ul
SauIyoBW SWOS Uuo INg ‘SSy1D Isnl si siyy [essuab ug
‘asn Ajfenjoe 0] Bal Jo ssejo 8y} uinial ‘SSY 10 SSe|d ul

aq 01 palinbai Ba1 e ojul papeoja. Bulag X XU Ue UsAID 4/

(0:
\(((0 ‘dO) dX3X) d IAILYTIY MOVLS JO Od ®% WIN == (d0) 3a0D 139 |l
\YILSIOIY IVNLYIAT LSV < (dO) ONDOIY %% (dO) d 93d)
\ _¢.0.==(0)
\ (D ‘dO)LNIVHLSNOD VH.LX3 duyap#

/« 'SSIppe Alowaw aAle[al ¥9elSs 10 Od V - O
:aulap M JOYL 104 ¥/
/x 'N'L'S'YO :paniwiad sisna 'saduaiayal Alowaw Ajensn
‘spueiado jo sadAy oyy10ads ayehiaibas 0} pasn Inq ‘JeIWIS «/

0 (2 'aINTVA)d ¥3L137 ¥O4 MO 379N0Ad LSNOD duyep#

[+ "J18SH X1 3719NOA LSNOD 8y} sl INTVA 3J18H
‘H pue 9 s1an3| Buluyap pue ‘syuelsuod Buieoy) 1oy Ing ‘JejiWIS

(0: (ze => @NvA) B% 0=<@ENIVA) ¢ N == (D)

\: (952 > @NTVA) 8% 0=<@ENIVA) ¢ W, == (D)

\ (82T >(@NTIVA) % 82T-=< (3NTVA) ¢ 1. == (0)

\: (000008%0 > (INTVA) % 000008X0- =< (ANTVA)) ¢ M. == (D)

\: (000000TX0 > (ANTVA) B9 0=<@3NIvA)) ¢ 0. == (0)

\ (000000TX0 > (INTVA) ¥® 000008X0- =< (INTVA)) ¢ I, == (D))
\ (O'3NTIVAMD ¥3LLIT HO4 MO LSNOD dulyap#

/x "0 Aq payoads abuel au ul st INTVA 4 T uinisy

‘an[eA Juelsuod e st JNTVYA pue ‘1sns| ayl st O

*aJe sabuel ay) Jeym saulap 0Joew Sy

‘spuesado areipawwi jo sabuel Jejnoiued Joy puels 0} pash aq ued
Bulis Jurensuod JasiBal e ul d pue O ‘N ‘W ‘1M ‘C ‘| S19nd| dYL «/

SASSVIO ¥3LSIOFY TIVINS dulap#
[+ 010BW SIY} dulysp

10U p|NOYs NoA ‘ssulydew jsow o4 ‘afessaw Joue [ele} e juud
pue sia3s16a1 ||ids Jo N0 uni |Im J3)Idwod 8y} ‘palinbai si

11 UBYM 010U SIY) SUSP JOU Op NOA J| *S8sed awos ul pauwlokad
2q ued Jey) suoneziwndo 4o Junowe ay) SINPaI ||IM NOA ‘) dulyap
AjLressadsuun noA Ji Ing ‘o1deW SIY) duyap 0} afes skemfe si 3|

‘s1a)sibal asay)

Jo awinay| ayy Bulpualxa sploae Ing sialsiBai ||ids se pasn aq 0}

1M ayy ul pasn Apoiidxa sialsibal smojje J9)idwod ay) ‘pauyap

SI} UBYM "SBuIydeW 3say) U0 ,SISSY1D ¥IALSIOIY TIVINS, duyaa

auop a1am siy} Ji s1a1sibal
Ids se asn 0] s1a1siBai ybnous aq Jou pINOM 818y} Jey) Sasse|o
urelad Jo s19)siBal Ma) 0S aABY SaUIYdeW WOS ‘JI9ASMOH “(SanfeA
uinjas pue siaeweled ssed 0} pasn asoy) Ajewiou ale sialsifal
asay) sialsiBal [iids se ju ayy ul pauonuaw Apioldxa

usaq aney rey siaisibal Buisooyd spioae 19)idwod sy} AJleWION «/

(5934 ON: 934 dOL ¢ A == (D))
\(Q)HALLIT WOHH SSYTO D3 dulaps

/x "uonduosap aulyoew ay) ul sieadde se yons JaNg| € WOl SSe|d 021199

SO3Y 11V SSV10 O3 3ASv4 sulep#
SO TIV SSY10 O3 XAANI dulap#

J« 'sBa1 aseq 1o} aUO By} pue ‘siB)sIBaI Xapul 10} BN[EA SSBJD YL «f

(SO3Y 11V : 93 dINL ¢ T == (ONDIFY)
\ 934 dOL ¢ 0 == (ONDIN))
\(ONOTH)SSY1D D3 ONDIY aulep#

Jx “Relre ue xapul pjnod Jo

uo|ssaldxa [euonipuod e aq p|nod sIyl ‘ONDIY Jaquinu Bal

Bulureluos sse|o 1sajfews ay} Jo JIaquinu SSed syl uindy
:PSLSAUI ‘UOIRLLIOJUI SWES UL «/

{HX0 ‘€000X0 ‘Z000X0 ‘TO00XO ‘0000X0} SLNILNOD SSVY1D O3 duyap#
/x "SASSV1D 934 N ybus) jo
._.m_mlmvm_N_IDN_<I J0 10)09A e 104 I3ZI[eniul ue si siyl

*S9SSE|9 YIIYM Ul 3 SIalsiBal yoiym auyaq «f

{.S934 1., .$934 dW1dOL. 934 dWL. .934 dOL. .$934 ON.}
\ SINVYN SSYTO 934 aulyepy

Jx ol dwnp 10y sBuis se sasse(d 1a1sIBal JO SaWeU SAID) 4/
S93Y dNLJOL SOIY TvHINID suyep#

Jx 'Selfe ue)1 aew isnf ‘Jaguinu sse|d Juaiayip e)l aAI6 Juop
‘SOIY 1TV Se SSejo dwes ay) st SOIY TYHINIO d0UIS «/

S3SSVTIO 939 WIT (U) SISSY1D 934 N duyap#

_ ‘{s3ssv10 93 W 'So3d 1V _ _
'SO3Y dINLJOL ‘D3 dINL ‘O3 dOL 'SOFY ON} ssep Bai wnua

/x “uolun J1dy} syuasaldal yey) ssejo
J3Yloue 3¢ 213y} Jey) d|qelIsap AIaA 11| ‘sasse|d om) Aue Jo4

'SSB[0 Pasaquinu-Ia|fews e uj
Aj1219/dWwod paurejuod aq JaAsu snw ssejo pasaquinu-iabre| e
‘S| yey) 19pJo BuISeaI0apUOU Ul PAISQWINU B JSNW SISSE|D 3y |

‘wayl 1o} mmocm_wh®_Q ssaldxa suonanasul
uaym Ajuo payeso|fe ale ssejo S|yl apISINo sialsifal ‘os|y
‘Jurelisuod Jajsibai e u ,J, 10,6, Aq pamojje si jeyy

Pag120

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

d

, continue

thor.h

A2

1S1i} 3y} Se pasn sI Jey) ajqeleA e buue|dap 10y adA DV «f
0 (N)d"ON93IY 94V NOILONNL duyap#

J« S191S1B21 OU BJe BI8Y) SIUIS IOy L 10} S|} SAeme SI SiyL
‘Buissed juawnbure uonouny 1oy Jaquinu JaisiBal ajqissod e SIN H T «f

/. /

[exSWBUWNBIY 131SIB8Y +x!ONITTVO ANV MOVLS xs/
/ /

(0:@3z19) ¢
\ (((epou~adAy pioA ==
W((BDALNNA) STAL DY IdAL) Ise 9a1) INTYA 334L) ||
\0 == (3dALNN4) SIJAL DYV 3dAL) ||
\3AON ¥31H4ILN3AIl == (3dALNNL) 3A0D F34L))
\(3ZIS'IJALNNS1OIANNT)SOYY SAdOd NYNLIY duyapy

Jx "0 UIMaJ am suawnbire
1O JaquINU d|geLBA B dARY UOROUNY 3U} § “TTVOGIT B 9ABY 9M Usym
10 s)uaWINBIe JO JISqUINU PaXl B dARY 9M USYM JZ|S UINISI SM JOYL UQ s/

/% 'SUIN}aI UOIOUN) BY}

Ja)ye |le way dod aioje18y) 1SN Jajed ay) pue suawnfise ou sdod
uonauny ayl yi o Jo ‘Buiuinias uo sdod uonouny e yeyy syuawnbire

UMO S} JO SalAQ 4O Jaquinu 3y} S1edIpul PINOYS Jey) uoissaldxa DV «/

(S3.LAQ) (S3LAG)ONIANNOY HSNd duldp#

/x "S8)A0 IHSNN ysnd 0} sydwape UoRONIISUI Ue UBUYM 4oBlS
ay ojuo paysnd Ajfenioe salq 4o Jaquinu 8y} si 1ey) Uoissaldxa DV «f

1, /

[x«SWBUWNBIY YIBIS 4 ONITIVO ANV HOVLS s/
/ /

T+ ()az1s awrey 196 = (HLd3Q)
\ (HLd3Q)13S440" HALNIOd INVHS TVILINI duyap#

[« 12181681 - dOL
2y} Jo} eaxa T snid azis awely ay) Aq USAIB SI 19SHO SIUL «/
Jx ",SBai"pasn|jea_pue oAl Jana” sbai_siaisibal jo sa|qe)
ay) pue () azis awrely 136 _Jo }nsal ay} se yans uopewojul
woJj paindwod ag pjnom anfea ay ‘anbojoid uonouny ayy Jaye
Ajdreipawiwi sanfea Jajuiod >oels sy pue Jajulod awely syl usamiaq
SOUBIBYIP U} HVA-HLJIA S|gBHeA dU} Ul SI0JS 0} JUSWSIEIS DV

0 @3YINOIY YILNIOd INVHS duyap#

Jx "O"TpeO|al Ul ‘,peojas, ul paindwod si siyL

*3|geNNS Waas Jey) suonouny ul (19yulod %oels sy} BIA passadde aq Aew

swued pue) dn 18s aq Jou paau Jajulod swely 8y} sueaw 018z
‘siaqul0d awely aAeY ISNW SUONOUNY JI 0419ZUOU 8q PINOYS BN[BA «/

/. /

Jxx uoneulW!|a «:ONITTVD ANV MOVLS x/
/ /

WNND3Y YILNIOd FAVEL NNNDIY HILNIOd DUV dulap#
/x ‘uonauny ay} Jo sjuawnbie 0) SSad2e 10} I191sIBal aseq ./
€ WNNDIY YIALNIOd FNVH duyapy

J« "UONOUN} B} JO S3|CeLIBA [e0] O} SSBIIR I0} JalsifBal aseq «/

2 NNNDIY YILNIOd MOVLS dulap#
/« "SuawnBure uonouny Buiysnd 10} asn 0} 181s168Y «/
/ /

[xxS1918169Y dUWelS 4 ONITIVO ANV MOVLS s/

/. /

T (103AN4)L3S440 WHVd LSHIH duyap#
[+ "@Nea ‘_wum_mm‘_ _mzc_oa juswnblie 3yl wouy Ja1owered 1S11} JO 18SHO «/
0 13S440 JNVHS ONILYV.LS duyap#

Jx "SI
puelsiapun o} anoge ajdwexa ay) Je 3007 143 0} dd S} WOI) 19SHO dYL
J« "Payedo|e [ed0] Isily 8y} JO
ONINNIDIE 8U} 011850 8U S1 1| ‘8SIMIBYIQ "PaTedo|[e [e20] S1l
BU3 JO AN BU} 0} 18SHO B} SI SIY} ‘AYVYMNMOA SMOYD AV JI
‘Je sa|gelieA [e20] Buiedo|[e Lels 0} LRl YIRS UIYNM J8SHO

AYVMNMOQ SMOYD NV duyaps#

Jx ‘OWel} dU} Ul 19SHo aAlehau alow e Je saoh

payeso||e a|qelieA [ed0] [euonippe yoes ‘si jey)

‘Sa|qeleA [ed0] 8y} 4O pua ssaippe-ybiy ay) Je si
aWely 3OrIS BU} JO SSBIPPE [RUILLOU B} JI SIY} BulSQ «/

AYVMNMOA SMOYD MOVLS duyap#

/x "SSaIppe Jajlews e Jajuiod 3oels sy} saxew
>oelS 8y} uo piom e Buiysnd Ji Iyl aulaq «/

/%
135440 INVES ONILYVLS
Buiye|najes uaym adualasel e Se pasn si SiyL ‘[ed07 IS4 Jo pug = 143

‘pasn ag ued Ajenioe ey JaisiBal Ajuo ay| ‘IBluI0d }oelS = dS
"1SIx8 Aj[eal L,usaop 1nq Jaisifal pley e se pauyaq "I8lulod sweld = d4
‘dd Se Jaquinu Jaisifal swes “Isuiod uswnbiy = 4y

143 ->| ssaippe uinal |<- d4 = dV

Ja1owered 1s1y -> | e <-Z+dV

N

|| Bas-doL staled |

[+

spremumop smolb swelpoers | |

{
‘p'ojul
}

(9w ‘e yun) unguy

:welboud ayy
10} paIndaxa uaaq sey (uonanisul,g- SOLIA, e Buiureluod Ajuo)
anbojoid uonouny ayy usym 4Jels ayl Jo MaIA INOAe]| 3oe)s Jo s|dwex3

Pagl121

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

d

, continue

thor.h

A2

/% J3)u10d-59€)S BU) JO 3orl) daay 0} pasu sAemje am JoyL UQ «/
/x "019Z sAem|e 0) JuajeAInba si uoniuyap oN
‘siajulod awely aAey Jey) suonouny
ul Ajuo pa1sa) SI anjeA syl “Janew jou saop Jajulod yoels ayy
‘uonouny e woJy Buluinial usym ‘ji 019zuou aq pINoYs YOVLS JHONDI™ LIXT «/

{
\ ‘0 = [l 1esy0 " dor Joy
\ (++} ‘ s|ogej wnu >} £ 0 = §) 104
\:((u1) Joazis 4 s|age|” Wwnu) 20jfewx (x Jul) =y 1asyo doy oyl
\ ‘0 =18syo doy Joy

\ (@z19) '1 + (3219)
\'WU\(T)Ba1 dOL + (PY)SIeA [B20] INAPY%- SOLAN. ‘T11d) Autidy
\:(Lu\'pareulwa Jou Jayuiod swely :Buiuiepn |, ‘3714)pundy

\ (papaau Jajuiod aweuy) ji
4
\'() wnu~jagel sy 186 - () winuTjage| Xew = sjage| wnu ul
}
\ (32I1S '3114)3ND0104d NOILONNS dulyap#

/+ ‘Reire 17190 dol Joyl ay) o} Alows 81ed0|[e 0Ss[e S\
“19151681 4O L 89U} 10} p1OM [euonippe T 81ed0|[e 8M JOYL UQ s/

/+ 'IndIN0 8q p|NOYS 9p09 IB|UIBSSE BU) YdIYM 0} Wealls oIpls e

sI 3714 “Jebaul ue sI 3Z|IS "Sa|eLeA [ed0] 8y} 1o} abelols jo

salAq [euonippe 37|S Buneoojje pue ‘panes ag isnw ey} siaisibal

Buines ‘1a1s16a1 Jajuiod awely syy Buizifenur ‘swre.y 3oels

ay) dn Bumaes Joy s|qisuodsal si anbojoid syl ‘uonouny e o}
Anus Joj 8pod Jajquiasse ay) SINAINO 1ey Juawalels punoduwiod O V «/

/. /

J4xA1UT UONIUNS «x!ONITTVO ANV MOVLS s/
/

/. /

Jxx SANeS 13][eD x«:ONITIVO ANV HOVLS s/
/

0 INTVA LONYLS dulyap#

Jx uawnBure 1s1y ,3|qIsIAul, ue se passed

S| SSaIppe Ay} ‘0 SUINYdI Il J "passed S| SsaIppe Ay} 1aym

2oe|d ay) Joj X 1o ue Bujuinial uoissaldxa ue se , JNTVA LONYLS.
auyap ‘1a1siBal e ul passed jou SI SSaIppe aNjeA aINdNNS aYl | «f

TNYNLIY LONYLS 00d LINV-43a suyap#

Jx (133u10d Mo®)S "9°1) O Ja)SIBal Ul Base AloWaW PanIasal
ay 0} ssalppe ayy ssed apn adA) arebaibibe Buiuinyas ay 1oy
aoe|d Buinlasal 1o} 3|qisuodsal Ja|[ed ay) axyew am Joyl 104 x/

P /
JxxUINBY 81eBRIBBY x ONITIVO ANV MOVLS x/
/

(NNNDFY dOL == (N)) (N)d ONDIH INTVA NOILONNS duyapy
/x’@N[eA uonouny e o} Jaquinu Jasibal ajqissod e SIN H T «/
(WNND3Y dOL ‘IAOW ‘O93Y) XU usb (IAOW)INTVYA 1TvVOdIT duyap#

/x "3A0OW dpow sey anfeA ay Buiwnsse
uonouny Areiqi| e Ag pauinial anfeA ay} puy 0} Moy aulad «/

(NNNDFY dOL ‘(FdALTVA) IAOW IdAL 'OFY) X1 ush

\ (ONN4 'IdALTYA)INTVA NOILONNS duyap#

/x "0'SIONN4 ‘asimayio

7093a NOILONNA Si S| DNN4 ‘umouy s| pajied Butaq uonouny asioaid ays 4|

‘(9811 & se) anjen ay Jo adA) e1ep ayl S| IJALTVA
‘uonouny e Ag pauinial anfeA ayj puly 0} Moy aulaq «/

/. /

[xUINIBY Je[eIS x ONITIVO ANV MOVLS xx/

/, /

0 (@3IWVN ‘IdAL 'IAON ‘WND)OHY NOILONNS duyap#

Jx"9€1s 8y uo passed are syjuawnbie |[e Joyl uQ

‘(sisdij|@ ue Buiyorew Jsroweled eiIXa Ue S|l 3SIMIBYI0)

Ja1eweled paweu e sijuswnbie siy) ji 01dzuou S| AINVYN

‘pajied Bulag uonouny ays noge pue sbire Buipadaid ayy

noge ojul SBAIB YaIym SOHY IAILYININND 8dA1 Jo Bjgeren e st NND
‘a|qe|reAe aq Jou

Aew uolyew.ojul ey aidym s|[eaq| 4oy |nu si Sy L

‘(@31 ® se) yuawnbire sy} jo adAy eyep ayr st IdAL

‘apow aulydew s,juswnbie ay s JGON

‘JuswnBie ay} 8101s 0} YdIym Ul Jajsifial pley e 1o
Sfoe)S 8y} uo Juawnfise ay) ysnd 0} 019Z S| anfeA
‘uonouny e 0} syuawnbie syl Ind 0) 818YM BUBQ «/

(Q3INVYN ‘TdAL 'IAOW ‘WND)FONVAAY DUV NOILONNL dulyap#

Jx "djay [eroads Aue 1noyum syuswnbiue o) pasn adeds xoe)s Jo
Junouwre ay} yoel) 0} Moy SMouy Ja|idwod syl “yoels ay) uo passed
sem uonsanb uljuawnbire sy Ji BuiyiAue op 10U paau o1oew SIyL

018 .94V NOILONNL, yim juswnbire

«Bumojjo}, au1 BuizAreue oy s|genns si NND a|geLeA sy}

‘auop si sy} 8oUQ “JuswInBie Jeyl 8quIsap AIWVN Pue IdAL ‘IAONW

sanfeA ayl “1sl| Juawnbie ay} ur Juswnbire ue 1sed ssueApe 01 NND
a|qelen Jazirewwns ay) arepdn 0} (UOJOJIWSS SUES) JUBWSIRIS DY «f

(0 = (INND)) (FWVNEITIJALNSNND)SOEY IAILYINAND LINI duyap#

/« "99UO Je Way JO Ylog Janau
Inq ‘o18zU0U SI IJALNS 10 INVNEGIT J8yNe ‘paj[ed S| 010ew Si
awn yoea ‘sny] ‘passadoid Buiag s [[ed uonouny O Areuipio ue
uaym Q sl INVNGIT Builis e se ‘uoiouny ay) Jo aweu ay) sureyuod
YDIUM XU Jo1~ [0qWIAS B SIJ| "BUO UYdIum Saynuapl INVYNEIT
‘uonouny Areiqi uoddns Jajidwod e 0} |jed e Buissasoid uaym

‘uonouny Areiqi uoddns Ja|idwod e o3 are sbie ay} Ji
0 Jo ‘sBure ay) aAI92a1 ||IM YdIym uonouny ayl jo adA) erep ayj 1o}
apou 8311 8y} SI IdALN4 JO anfeA 8yl .SOAV AAILYINNND, 8dAl sey
a|qenen syl sl Juswnbie ays Jo Buiuuibag sy Je ayers ayl 1o}
N 3|qelen ayy Buizieniul Joy (UOJODIWSS SUBS) JUBWANLIS DV «/

W SOHY IAILYININND dulyap#

Jx "3Ul_@sn os ‘Aidwa aq Jou pjnoys pue Isixa 1snw

2INoNNs elep 8yl “Jansmoy LSOHY IAILYTINNND. Ul BulyiAue aiois

0} P33U OU S| 343y} ‘YIeIS 3y} Uo passed ase sjuswnfbie |je yojym

uo sauiyoeuw jabre} 104 “yeys Jo soes) daay o} sa|geleA Jaylo

sey Ja)Idwod 8y "yoels ay} uo passed uaaq aAey jeys sjuswnbire

au1 Inoge BuipAue SOV IAILYTNINND. Ul PI0ISI 0} PadU OU S| BIaYL

“Je} 0s Juawnbue Jo SalAq jo
Jaquinu 8y pjoy ued pue sadins Jul_ adA) ayy ‘saulyoew 1ab.e)
aWos 104 "sanfeA pajejal Jaylo pue .94y NOILONNA. 0 uawnbire

Pag122

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

d

, continue

thor.h

A2

/« ‘Ba1opnasd e si) ji 10
aseq Ue Se pasn aq ued Jeuy) Bal prey e S| X jl 0J9ZUON «/

1O141S MO 93 jopuyiy

J+ "uayy Ag paleulwje usaq

aney sbal opnasd aduls ‘@auaIayIp Ou Sayew) ‘peojal Jayy

"JoL1Is 8q 0} paau ssed peojal 10} Sa|l} 82IN0S

‘Ul 8q 0] WY} SJUBM USUI 3Y) Jey) SSBJO 8yl 01 paredojie 186 [im Asy)
ey adoy ayy ur sBai opnasd 1dadoe 0] Juem Saji 92IN0S ISON

"Pasn aq 0} uoNIUYdP JaNE| Y} SASNED 1DIYLS MO 93 loquiAs ayL
'sBas prey a|genns pajedo|ie uaag aney Aayy Ssajun Wayy
s10a(al Jaylo ay) ‘sbai opnasd |je sydaooe uomuyap fensn ay L
‘WIay} JO Yyoes 1o} suoniuyap areulslfe oM} aneYy
*SSE|0 Ureuad e 10} ANplfea s)i %99yd pue
X1 934 e sI Bie ayl 1ey swinsse 44O MO 93Y S0idew ay] «f

(378N0A LSNOD == (X) 3402139

\LSNOD == (X) 3400139

\LNI"LSNOD == (X) 3400 139

\434 109NAS == (X) 340D LI
\434 13gv1==(X) 3400 139)

\(X)d LNVLSNOD ILVAILIOTT duyap#

/x "3719N0OA LSNOD B 'S110 d LNVLSNOD Saysiies X jeui usaib si |
‘puelado [essuab arewniBa| e SI X an[eA JuUeISU0d ay} jl 0JSZUON «/

(LSNOD == (x) 3000 139

\434 109WAS == (X) 340D 139
\434 13gv1 == (X) 3400 139)

\(X)d~SS3YAAV LNVLSNOD duyapy#

/x ‘pau0ddns are sassalppe JUeIsuod
U2IyMm Ul 9AIOLIS8I J0W aJe saulydew ma) e Ing (X) d- LNV.LSNOD.
Se paulyep aq ued SIy} ‘SaulydoeW ISOW UQ 'SSBIppe plfeA

B S| YOIYM JUeISUOD B S| X XLH dU3 i T SI Jey} uoissaldxd OV «/

TSS3HAAY d3d SOIY XVIN dulap#
/x "SSaippe Alowaw pifeA e u Jeadde ued jey siaisiBal Jo JBQUINU WNWIXBN f

/. /

Jxx S3IAOW ONISSIHAAY xx/
/

\!(.€, ‘wpown,, ‘apowd ‘spow|d ‘geidopown) sounyqlnul
\ SEVLdO 139dVL LINI duyap#

1, /

Jex STIVO AAVHEIT s/
/ /

(XD '¥aAVN4 ‘dNVHL)INITOdNYYEL 3ZITVILINI duyaps

/x "PBUYSP BQ ISNIA 4/
‘auljodwes) ay} Jo Lrels ay) 0}
9p02 aind s,uonouny sy} wouy ysew-1aisibal ayy Adod S\ «/

/« "UONOUN} BU} JOJ SNJEA UTeyd JIelS au} 1o} X L Ue S| XD
*ap09 aind s,uondUNy BY} JO SSAIPPE AU} 10} X 1Y Ue S| YaAvNd
"auljodwiel) e jo sued a|geleA sy} zifeniul 0} SUSUl 11y W3 /

03ZIS INIMOdINVY.L dulyap#

Jx ‘uonouny pajsau e Buneiua Joy auljodwes) ay) Jo spun ul Ybua
(3714)3LV1dNT L ININOINVYL dulap#

[+ "P3ULSP 3G ISNIA +/
/+ "sued ajgeLreA ay) Joy adeds Buines| ‘suljodwel; e jo
sped jJue)suod ay) Bulureuod 320|q € 10} 9po2 J9|quiasse INAINQ «/

/, /

Ixx SANITOdANVYL xx/

/. /

/. /

Jxx SOUVHVA «x/
/

(ONT38V1 ‘I112)Y31408d NOILONNS duyap#

I 'PAULBP 3G ISNIN -/
Jx ‘SNsal
ey} 9pod Ja|qUIasSe ay) Je 300| pue Ja|idwod O pajeIsul s,walshs
ay) Buisn Buiyoud Joy weiboud rews e a)1dwod ‘Ino wayy ainbiy
01 "0 NNO Aqg 10U ‘JuswuoIIAUS WalsAs Bunesado 1noA Aq paulwialap
aJe Junodw_ 0} passed aq p|noys ssaippe ayl Moy JO S|re1ap ay L

“Juudy,
® Ul ,posd. Buisn awreu ay) ajessuab pjnom noA os ‘ON13GY
Jaquinu ay} Aq pamoj|o} 4. SI 3|geleA Sy} JO aweu 3yl "Ssalppe
ay} puy 0} sjoadxa Junodw_aiaym Jalsibal e ol sjgenen
131UN09J ® JO SSaIppe 3y} peo| Isnw apod Jajquiasse ay} ‘buljed
alojag "junodw_aunnoigns Bulyoid ayi |[ed 01 apod Ja|quiasse
awos 3|4 01 Indino 0} Juswalels punodwod 10 JUBWSIRIS DY «f
/. |

[xx Bulyoid xONITIVO ANV MOVLS xx/

/. /

{
\ ‘(ye1esyo doy loyy) a9l

\ HALW ,m.__&t:__mr
\ ‘(. uyanbojida uonouny ur g Jou 18sP0” do) Ioy) :1ouiT, 1apIs)puLid)
\ (uvolouiesyodoy toys toug !, .EEEEEJ
\ (0 =i 19syodoy 1oy 4
\ {(sbre”sdoduonouny juaund
\ ‘gzis ‘sbre”sdod uonouny juaund + T + (3ZIS)
\ Wu\(pgp)sBreTdod + T + (p96)SIeA [220] NWPY SOLMN, ‘I11)pund)
\ (sBre”sdod uonounyjuaund + z + (3z1S)
\ LuBal-dOL sJaled 0} Bal-dOL Adod pY% dOd., ‘T TId)Aund)
\ (T +(3218) LU\ L3N, ‘IT1d)pund)
\ (321S '314)3N901dT NOILONNS duyaps#

/« 19sjjo_doy iy} jo
anfeA ay} %93yd pue ye 1asyo do) Ioy) aal) os[e ap\ Ialsibal
dOJ sJ9|ed ay} 01 1a3siBal 4O 1 ayl Adod 0} paau am oYL UQ «/
[+ "Rem awes ayr ul,SYI1SIDFY A3ISN 11V, pue
ONI|Jane” sBal_ wouy paulwialep are a10isal 0) sialsibal ayy pue
,3N90704d NOILONNAL, oi0ew ay) se sjuawnbre swes ay) saxe) oioew
SIyL “J9|[ed ay) 01 |0.4u02 Bujuinial pue ‘pajed sem uonouny
ay) uaym sanjeA Jiay 0} Jajulod yoels pue siasibal panes
ay) Buuiolsal Joy a|qisuodsal si anbojida ayl ‘uonduny e wo.y
113 10} 8p09 Ja|quiasse ay) sINdino Jey) Juswialels punodwod DY 4/

0 XOVLS IHONOI™ LIXT duyap#

Pag123

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

d

, continue

thor.h

A2

JeUM "Op Aj[enioe susul 8y Jeym aredlpul 0} JUBIoINS

10U S SUSUI 9S8y} JO aINjoNAs 1Y 8yl ‘spuelado ay) isnl are
yoIym sjuelsuod Jo waw_ ‘Bai_snouea Buiureluod sx 1y a|eled,
are suianed asoym susul :uoneziwndo ajoydaad jo synsai ayy

yum [eap o0} paredaid aq Isnw .00 3LVAdN IDILON. JO UOHIUYSP YL

‘anjeA apod UOIIPUOD dY} Inoge umouy si Buiyiou yey) Aes o}

8SBI SIy) Ul snjeis 00 Jslje Isnw D0 31vAdN IOILON. ‘@i04218yL
*(20T)@Pe. Jo Suau0d BY) S18|}aI) Yey) anul aq 1abuol ou

i 31 sy Ag paBueyo jou st 8pod uonIPUOd dy ybnoylly e,

ul 8NjeA MU € S810]S USUl Juaind ay} pue ,(z0T)@e, uoiedo| uo
paseq apod uonIpuod ay 18s usul snoinaid auy Jey) asoddns Ing

'SuUsU| Yons 10} palajeun snieis 99 aAea| ued 00 J1vddN IDILON.

Ajfensn re sueaw YoIym ‘apod UORIPUOD 8y} 189S Jou op siasibal
SSa.ppe Ul 3101S Jey susul ‘00089 a8y} Uo ‘ajdwexs 104 “Bunoayal
Se papi0dal S| SPOI UONIPUOD B Tey) SuoIssaldxa ayy arepijeAul
Aayy Jayiaym aas 0} 593y ISNW 01oeW SIY} ‘SIa)s|Bal aulydew Jaylo
Jal[e Op INQ 8POJ LONIPUOD Y] 18S JOU Op ey Susul aJe a1y J|

*,009_ @SN JOU Op Jey} SaulyoewW Uo Pash Jou S| 0JoewW Siy L

*(099), 19s Apoyjdxa

1By} S0y} Se ||am Se AlAROe Jayilo Jo 1onpoidAg e se apod

uonIpu0d 8y} 18s Jeyl susul aziubooaal o} Aljigisuodsal s,010ew

SIyl s1) “dX3 st Apog asoym NSN| usul ue 1o} Ajgyendoidde
,SNJeIs 99 Jo sjuauodwod ay) 18s 0} JuaWwalels punodwod DY «/

1 /
Jxx 3d0D NOILIANOD x«/
/

{} (13av1'yaav)ssayaav LNIANIdIA IAOW dI” 09 duyapy#

/x "A0} pasn sI 1l apow aulydew ayl uo m_u:wnw_u eyl 1088 ue sey
(uoissaidxa ssaippe arewniBa)) 4AAQV J 139V 01 09 &/

{ (NIM'IAON'XA10°X)SSIHAAY IZIWILIOTT duyap#

/x "Indino ay} sziwndo 03 saunuoddo
az1ubodal 0} sisixa 3 “Buiylou op 0} oidew Sy} 1o} ajes shkemfe si 3|

'SS3YAAY ALYWILIOTFT dIT 09
asn ueo oidew siy) yey) os passed are NIM pue JAOW

"aUOp 9q 0} SPA3U Jeym SPIdSP O} SIY} e 00| 0} [NJ3SN S| JI SISLD JWOS U]
‘pa|[ed Sem sjal” Alowaw N0 yealq 210j9q Sem)i Se ssalppe syl st Xa10

*0'mo|dxa ul ssalppe” Alowaw_ :a9e|d auo Ajuo ul pasn S| 0ioew Sy L
'SSaIppe PIfeA ‘Mau 3} UInial ‘auo puy am j| “arewnBal ag 0}
ssalppe ayewniBa||i ue Buikypow jo skem yuapuadap-aulyoew Aij

{
\ ‘daay oxob
\((X) d"IAILYIFY LOIHIANI WIN) #
\ ‘daav ojob
W((X) d7IAILYIFY MOVLS HO Od) #}
\(¥aav ‘X '3aon)SS3”aav ALVALLIOFT 41 09 duyap#

((X) d"LOo3dIaNT W3

\0 =< (T 'X) dX3X) TVALNI 7%

\LNI"LSNOD == ((T 'X) dX3X) 3A00 139 B%

\((0 *X) dX3X) d”LOIHIANI WA 3%

\ SN1d == (x) 3a02 139)
,ﬁxva|m_>_k<._m_m|5m_m_oz_|_zm__>_mc_vauu

(4311938 IVNLYIA" LSV < (X) ONO3Y |l

\WNND3IY dOL == (X) ONOIY) 3%

\ B o (x)d 934) Il

\((0 X) dX3X) d IAILLYTIYE HMOVLS O Od ¥% WIAW == (X) 3000 139)
\ (X)d™LOTHIANI NI dulep#

« 'SSaIppe

19311pul-W3N e 03 JudfeAInba os[e ale sialsiBai opnasd |je
‘19151631-dO 1 8y} 31| ‘0S "uonisod-yoe)s e 1o Jaysibal
-dO.L 3y} ojul pawuojsuel) Ajlenjuans s 1aisibal opnasd v

‘Buissaippe-,Ja)sibal aseq,/anie|a) Ul way) asn

oSs[e pue sassalppe Joa1Ipul (3Ae|a1 %elS 10 Dd) NI JO

pupy e Hwuad 210213} UBD SN "S80USIS4RI 3OB)S Sk Aem awes
aU) Ul pajpueyY S| S}OJ |0QUIAS 'SISSBIPPE 1081IPUI YIRS d|puey
01 8| 8Q ISNW aM 0S IBIS 8y} U0 SapIsal JaisiBal-do1 IO

‘(J@ui0d oels - SOL 8yl
19151681 9seq auo Ajuo yum 1Y a1esauab o1 sjqissod jou s
‘(19151621 3seq B Se 4O 1) Sassalppe aAle[dl 4O 1 Huwiad 1snw apA «f

((x) d"3AILY13Y YOVIS |l (X) dSS3MAAY LNVISNOD)
\(X)d " IAILYIIY MOVLS ¥O Od dulep#

((43LS1939 IVNLHIATLSYT => (X) ONO3Y 3%
\Y3LSI93Y 0dNISd LSHId =< (X) ONOIY) ||
\WNNDIY HILNIOd FAVYL == (X) ONDIY ||
VWNNDIY YILNIOd MOVLS == (X) ONDIY) ¥ (X) d ©34) Il
\(LNITLSNOD == ((T ‘X) dx3X) 300 139 %%
\(¥3LS1939 WNLIIA LSV => ((0 'X) dX3IX) ONDIYH ¥%
\Y3LSI1934 0aN3Sd_ L1S¥Id =< ((0 *X) dX3xX) ONDIY) ||
\WNNDIY HILNIOd INVAL == ((0 *X) dX3X) ONO3Y ||
WWNNDIY HILNIOd MOVLS == ((0 ‘X) dX3IX) ONDIY) B%
\ (0 *X) dx3xX) d 934 %
\ SN1d == (x) 3400 139))
\ (X)d IAILYIIY MOVLS duyap#

J« "uoieso|[e JalsiBas aiojaq Jojujod
awrel)yoelIS ay) 9zjubooal ||IM)l 0S (XU~ SIeA oIS [enuin)
s1a)s16a1 [enUIA SMO|[e 0S[e S3SSaIppe aAle[al YOeIS 4/

/+ "SSaIppe SIy} asn 0] sjuem jey)
uolssaldxa WIN 3y} 1o} apow aulydew ay; st juswnbie 3O ayL
‘uoIONIISU| Ue 10} SSalppe Alowsaw pifeA e s| eyl
uoissaldxa 71y ue s8ziubodas SSIYAAY FLVYIILIOZT H4I 09 «/
Jipua#
((X) OND3Y) d XIANI"HO4 MO ONOIH (X)d XIANI" YO MO 93 duyap#
[+ "Xdpul Ue se pasn aq ued ey Bal prey e si X JI 0I9ZUON /
((X) ON93Y) d 3SVE HO4 YO ONOIY (X)d 3ISVE HO4 MO 93 duyap#
/« "Ba1 aseq e se pasn aqg ued Jey) Hai prey e Si X J| 0JI9ZUON «/

as|a#

(431S193470aN3Sd LSHId =< (X) ONDIY || ((X) ONDTY) d”XIANI"HOH YO ONDIY)
\ (X)d X3ANI"HO4 Y0 93 auysp#

/« "Ba1opnasd e siy i lo
Ba. xapul e se pasn ag ued yey) Hai prey e si X i 0J9ZUON «/

(¥31S193470aN3Sd LSyl =< (X) ONDIH || ((X) ONDTY) d"3SVE "0 MO ONDIY)
\ (X)d"3SVE "0 MO 93 sulyep#

Pagl124

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

d

, continue

thor.h

A2

\'WU\S9% WOl By Jojquiassy ¢, ‘3114) pundy
\(FA)LEVLS T4 NSV duyap#

/x "8l Jajquiasse jo Buluuibaq 1e IndinQ «/

/. /

e IOMBWEIS Bl ¢ LVINHOd HITDNISSY v/
/

/ /
Jxx Old x«/
/

WO'M'Z LO3SNelep, dO INSY NOILO3S™ V1va aulap#
/« "eIep 3|geIm 81039 INAINO

,O'Y'T LOISNOP02, dO” NSY NOILOIS™ LXIL duyap#
1« "erep Ajuo-peal aioyaq INAINQO «/

/ /

Jxx SNOILDIS xx/

/. /

3SO NOILONNS IAISYNOIH_ON auyaps#
2SO NOILONNS ON auyep#

Jx 1211631 © BIA S|[Bd AUE JUBM L,UOP B
Jx 121131 e ul 1day ssalppe ue |[ed 0} uey) Ssaippe uonouny
JUBISUOD € [[ed 0} 1a)1aq J0 POOB Se S i §I 0I0eW SIY} dUYAQ «/

0 SSIOOV ILAE MOTS duyap#
/+ "d|gelisapun pue Mojs si Sa1Aq Aq Alowaw 0} SS3Je JI 0ISZUON «/

(2 : 0 ¢ apowd == (W) (W) LSOO IAOW AHOWIIN dulyap#

J« 19151631 pue A1oWwall USaMISY SIAOW HQIYU O} JUBM SAN «/

(€T : T ¢ (SS3¥AAV) d AAILYTIY HMOVLS HO Od)
\(SS34aav) LSOO SSIHAAV duyaps#

/% "POSN 3 M Xa]dWO02 ISOW 3} SI Fey} U0 3y} JS0I ISIMO| ‘dwes
2y} 9By swioy a|diNW | "Pasn 3 ||IM }SOI ISIMO| dU} Yim
WI0J B} ‘UMOUS S| SSBJPPEe Ue JO WI0j SUO UBY) SI0W 3I3UYM S3SED U]

'S1S00 [enba aAeY ||IM SBSSAIPPE |[e 8OUSH ‘B UONNIAXD

pue yIBua| awes ay) aAey Ajfewlou SUORONASUI | ‘saulyoew
S|y UO ‘1anemoH apouw Buissalppe ay) Jo 1S00 anuy ay} Jo
uonewixoidde pooB e si1S09 yneysap 8y} ‘saulyoew DS 1SOW 104

'sanfeA ,S1S0D” LSNOD. dys pue uoissaidxa
SS3YAAY ayi woy pandwiod S IS02 a3 ‘paulyap Jou § 'SSIHAAY
SureIuo9 ey apow Buissalppe ue Jo 1500 ay) BUIAIB UoISSaIdxa Uy

ealq
\ {(S) SNSNI' N~ SLSOD winai

\ :QOWN ased
\ ‘yealq
\ 1(0€) SNSNITN"SLS0D uinial

\ :AlQN 9ses
\ yealq
\ 1(02) SNSNI' N~ SLS0OD winai

\ :JOW ased
\ yealq

\ '(GT) SNSNI'N SLS0D uinial
\ :AIQ 8sed
\ Mealq
\ (k) SNSNITN SLSOD winjai
\ as|e
\ (€) SNSNI_N"S1S0D uimai
\((X) 30N 139) d IAOW LVOT) 4t
\ 17NN 8sed
\ ealq
\(ET 1 T ¢ (3powdIOA ‘(X)) puesado™ajdwis) uinial
\ NI 8sed
\(FQ0D ¥3LNO'IA0DX)SLSOD X LY dulyap#

/x "PAURIUOI S|
X Yya1iym ur uoissaldxa ayi Jo apod ayl sI 3d0D ¥ILNO "suonanisul
15} N 01 [enba 1500 & Aj10ads 01 ,(N) SNSNI'N~S1S0D.
JONJISUOD BY} 8SN UL NOA ‘oidew siyl Bunum uj 's| uoonsul
Aldninw e Apsod moy areaipul 03 ‘ajdwexa Joy ‘pasn ag ued siy L
‘suoissaidxa 71y Juelsuoduou o} saljdde g ,S1SOD™ LSNOD. i1 «/

A Y]
\ '379N0Q LSNOD 8sed
\ 434 109WAS 8sed
\ 434 139V ased
\ 'L1SNOD ased
\ RAVIEY]
\ T uinyal
(G () TIVALNID d” 931137 ¥O4 MO LSNOD) #
\ ‘0wl
(G, “(X) TVALNID d- 831137 04 MO LSNOD I
\(TL(X) TVALND d™¥3L13T HO4 MO LSNOD) 4l
\ {LNI" LSNOD ased
\(3a02 ¥3LN0'IA0D'X)SLSOD LSNOD dulap#

J« “(Jood eisuod ayy)
8AI0RIIP V1V € Ul Ind 8 0} paau yeys sBuiyy
18410 Jo ‘piom & Ui 1} 0} abe| 003 SI Teuyl INI_LSNOD - 2
uopoNASUI pIom e Ul siy Jeyy INI- LSNOD - T
uopoNAsUI plomjley e ui sy ¥ey INI LSNOD - 0 1S00

'€ > $)S09 9sn AJuo 0s ‘IoyL uo poob jou si siyL “Ia)sifal e ol
puesado ay) 8210} Aew pue aAisuadxa si ‘4ayealb 10 € JO 1S0D VY «/
/+ '3A0D ¥3LNO Ul punoy
‘paureIuod St)l YdIYm Ul UoISSaIdxa ay) Jo apod XU ay pue ‘X ul
uoneuIWEXa 10} d|qe|leA. S| YdIym ‘JUBISuod 8y} Jo anjeA asioald
sy} uo puadap Aew 1502 8yl "uoissaidxa ue ul anjeA JUeISuod
JO puIy ey} Jo 8Sn aU) JO IS0 SAIE[3I B} UINISI 0} JusWalels
,uInjal_ e yaeas Ajprewn|n Jsnw ases yae3 *,9|gnop 1suod_pue
Jal~|age). ‘Jal joquiAs_ ‘ISUOD_ ‘Ul ISUOD SBPOI UOISSAIAXD
10} S|9ge| ,0SBI_ UIRIU0D ISNW J| "SuoISsaIdxa 1Y JULISU0D Jo
SIS09 dAIlE[21 BY) S8LIOSAP Jey) Juswale)s ,youms D e Jo ued v /

/. /

Jxx S1SOD x/
/

“(NSNI ‘dx3) 09 @repdnaonou
\ (NSNI 'dX3)00 31vadn IDILON duyaps

/+ 100" 3LvAdN IOILON. Ul pue ajly puwi, ay) ‘sade|d om u suseped
Jnoge uoiew.ojul pajrelap Buirey sploAe siyl 99 ‘a|dwexa

10} ‘pawreu (*::SaINQUIY USU| 30U,) dINGUNE Ue Je SY00]| Jey)

uonouny & |[ed 03 S1,00 F1¥AdN 3DILON. 40 uomuyap 3jqissod v

“LINI"SNLVLS 20,
unJ 03 3snf S| 8UO $88S I UBYM Op PINOYS .20 31vAdN IDILON.

Pagl125

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

d

, continue

thor.h

A2

\(INNN “F71) 19syo ™ doy Joyr™ mau38s
\ (7 X1434d) dwouns i) §
\/x :9N[EA [e1lUI S320|(JISeq MaU aU) 0} 19S)0” do) IOy} 18S 4/

P%S%. ‘I11-) puudy
}
\(IWNN'XI438d 3714)738VT TYNYILNITLNdLNO WSY dulap#

\ (ANN XI434d

Jx 190|q 2iseq
MBU U} 10} BN[eA [eniul 8Y} 01 19SH0~ doY IOy} 18S OS[e M I0Y L UO

[+ 'SSe|0 3yl ulyum Jsquinu ayi st NNN pue [age| Jo sse|d ayl s XI43dd
219UM |30 palaguinu [eusdjul ue INdino 0} Moy Si SIYL

(IWVYN “.S% ., ‘I114) puud)
\@AVYN'IU)ATATIEYT LNdLNO WSY dulap#

/x "IINVN Paweu [age| [9A8]-1asn & 0} 8dualajal e INdINo 0} MOY SI SIYL «/

(0) alum (3114 438X\ SInd} ((FNVN ‘F11d) weu” s|quiasse } op
\(FWVYN'TO3IA'TTH)TYNEILXT LNdLNO WSV aulap#

« Afeusaixa
paJte|dap SI a|qelieA e jey) Jaxull 8yl 81NSud 0} 0I0BW SIY) PasU SN «/

(0) anum {3714 *.nd43axN.) sind} ((JWVN ‘I11d) auwreu” sjquiasse } op
\(GWVN'3TI4)138YT 3ZITva0 1D WSV duyep#

[« "SO|l} J8Y10 WOl 9OUDID81 10} pauldp

JINVN PawWeu [3qe| [9A3]-19sn 8y} axew 0} puewwod e Indino 0} Moy SI SIYL «/
(0) anym { :(3714 *,uv.,) SInd) (FNYN ‘371d) sweu” s|quuasse } op

\FWYN'ITI)TIEVT LNdLNO NSV dulyap#

/x "JINVN S[CELIeA 1O UOBOUN) DIIES B UO [3ge| 3} SB Yyons
‘JINVYN PSWERU [SCE| [9AS]-19SN B JO UOHULSP 33 INdIN0 03 MOY SI SIYL «/

/. /

xx INAINO [99ET 4! LYIWHOS ¥I1GNIASSY
/

{
\((@3aNNOY) “.u\n%'0 3N, ‘(37114)) puud)
\((FWWN) ‘(3114)) aweu” sjquiasse

\ ‘{(Juonoas erep
\ (Quonoas ey ui) y1
}
\(@3ANNOY JZIS ‘FAVYN ‘T4 TVO0T LNdLNO INSY duyapy

/% “|OQWAS UOWWIOD [eJ0] € BUY3P 0}
aul| Jajquiasse ue Indino 01 moy sAes Siyl «f

{
\((@3aNNOY) *.u\n%'0 dI, (3714)) suud)
\(@WwN) '(37119)) sureu”sjquissse
\(@EWYN) @9)13avT 3ZITvE019 NSY

\ ‘(Juonoas erep
\ (QuonoasIxay ui) ji
}
\(@3ANNOY 3ZIS "FNVYN ‘FTIHNOWNOD LNdLNO WSV duyeps

/x "loquiAs uowwod [eqo|b e auyap o}
aul| Jajquiasse ue Indino 0] moy SAeS SIYL «/

/ /
[xE¥eq PIZIENUIUN ! LYINHOL HITINISSY x+/

(. N3dvd 3SOT0_WSV auyep#
). NIUVd NIHO WSV aulyep#

+ "9P02 IB|quIasSe Ul
suonesado anawyite dnoib o) pasn sasayjualed ay) auyaq «/

“(N31"d1d 'WvIdLs) ose indino
\(NTT "dLd 'WYIALS)IOSY LNdLNO WSV duyapi

Jx "s1abajul

se Indino se-UoN "(SHg g€) pJom auo ul pade|d aq pjnoys
J1910B1RYD BUQ "8U0 AQg SUO SIa)9RIERYD Y] INdINO 0) PaBU M JOYL 104

/x 'dld 1@

s91Ag N3 8y Buiurejuod jueisuod Bulls e a|quIasse 0] uoiaNIsul
Js|quiasse ue WYIH1S weans olpis ay) 01 INdiNo 0} JUSWNEIS OV «/

{

\'(3NTVA ‘3714) X8y Indino

\'(u VLY@, ‘T714) pundy
\ }
\(NTVA'TULAILAG LNDLNO WSV dulyap#

Jx '91AQ JUBISUOD DLIBLINU B 10} BUI| IB|qUBSSE U ININ0 0} MOY SI SIYL «/

_(x '3714) seyoTIndino
\(X'TNFPVHO LNdLNO WSV dulyap#

/+ "S}21”|oquiAs 10} papaau si Juswieal [eoads IOyl UQ «/
/« "ON[eA JUBISUOD
© syuasaldal yoiym uoissaldxa 1Y ue aq |Im INTVA uawnbie ay |
*X Sl @njeA asoym ‘saiAq T Jo Jabajul ue ajquiasse 0} uononisul
J9|qWIasse Ue AYIH 1S wealns oipis ay) 0} INdino 0} JUSWSIEIS I VY «/

{

\{(B1SP . U\S% JV1VAN. ‘WYIHLS) Aundy

\{(1sp “,30T'%. 'INTVYA) TYWIDIA OL INTVA vaH
\ ‘[o€]nsp reyo }
/m_:._<>._>_<m_Emﬁ<o._“_|m_F>m|5n_50|_>_m<m:_hwcu

/« " 3dAL INTVA 1vad, 8dA jo

uoissaidxa O e aq [IIM INTIVA “TINIVA S| dnjeA asoym

‘. apow4Q_ Jo Juelsuod juiod-Buneoy e s|qUIasSse o0} uoionsul
J9|qWIasse Ue AYIH 1S wealns oipis ay) 0} Indino 0} JUSWSIEIS J VY «/

/.]

Jxx INAINO ©1eq + LYIWHOS YI1GINISSY v/
/

L LMVLS INFWANOD WSV dulap#

‘(,u\ "096-loy} Ag parelauan !, ‘J7I4)pund)
\ (3114)009” AdILNIAIT WSV duyap#

LU\IB|quIasse 4asn Jo pu3 i, 440 ddV NSV dulap#

/x S1IONJISUOJ [ensnun urejuod _wmr_o_ ou
sau|| Buimojjoy Buikes 1xa) ajy Jajquiasse 03 INAINQ «/

LU\'13|qUUBSSE J3SN JO LBIS I NO ddV NSY dulap#

/x 919 ‘SluBWIWOD ‘aoeds S)YM BlIXd ‘SJUBISUOD Ialoeleyd urejuod Aew
saul| Buimoyjoy Buikes 1xa) a|i Jajquiasse 01 INAINQ «/

(0O4NI"NOISHIA

Pag126

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

d

, continue

thor.h

A2

/. /

Ixx NOILVTIdNOD-SSOHD x«/
/ /

/. /

/%xS19BBNQ3P IV 1 O4ANI ONIDONEIA 4/
/

((3ZI1S) ".udiis NNN%'0 dFuN. "FT1d) Juud)
\ (3ZIS'TNAdINS™LNDLNO NSV dulyap#

Jx 'SA1AQ IZIS Ag 19)UN0D UONEIO| BY} ddUBADPE 0} SAES ey}
aul| Ja|quiasse ue INdiNo 0} Moy SI SIYL

((207) *.u\p9% Ubire N0 V1VaN. ‘F7Id) uud)
\ (90713 NA)NDINY LNALNO WSV dulapy#

I« "S91AQ DO sz 4O B[ANINW © 0}
131UN0D UOIIeD0| BY) dUBAPE 0} SAES Jey)
aul| Ja|quiasse ue INdiNo 0} Moy SI SIYL

/ /
[xNAINO JBWUBIY 4! LYINHOS HI1GNISSY

/. /

\ {(INVIYLS “u\p/.) sindy

\ ‘4ng ‘NvIYLS) sweu” s|quasse

\ _‘(Wv3dls ', vivan,) sind)

\(INNN “X1434d 4na) 13gvT TYNYILNI ILYHINTD WSY

\(INNN ‘XI434d 'WYIHELS) 138VT TYNYILNI LNdLNO WSY

\ ‘[ogeling seyd
}
\(F1VL ‘NN XI438d ‘NVIHLS)13EYT ISYO LNdLNO NSY dulyap#

[+ "120e] 3Y} yum [erdads Buiyou
op 9\ “(ulened-1sased syl ul papasu S i) JUSW)S 1Sl
8 se 8|qel 8y} Jo ssaippe 8y} INAINO 0} JUBM 8M JOYL UQ «/
I ‘Areroads
ndino aq 0} spaau ajgel-dwn| e a10jaq |age| dY} Ji SIY duYad «/

(734 'INTVA "U2/(P%T-P%T) VLVAN, ‘T11H) putidy
\ (134 'INTIVA ‘FH)L73 744107 ¥AAY LNDLNO NSV dulap#

Jx "OAR[d1 S| TRy} J0JOBA-9SED B JO JUSWSIS Ue INdIN0 0} MOY SI SIUL

@NMIVA .NZ/P%1 YLVAN, ‘3 114) pund)
\ (@NIVA ‘FT4)11303A™HAAY LNdLNO NSV duyaps

/x "9IN|OSQR BB S)UBWS[3-3|ge)} 8SED |[e JOYL UQ «/
Jx "9IN|OSQE S| 1oy} J0}09A-2SED B JO JUBWI[d Ue INdINo 0} MOY SI SIYL «/

/. /

Jx+S3IgRL Y2redsIq x«: LYINHOL YITGNISSY xx/
/ /

{("aAm031IP ©Y9% 3SN 10U 0ANISSTHAAY ANVEIHO™ LNIHd.) [ere) Joyy
\ (X ‘3714)SS3YAAY ANVHIJO LNIYd duyap#

Jx "314 3|l UO ‘X SI SSaIppe dsoym puesado Alowaw e Julld «/

(3000 X ‘3714) pueladojund
\(3Q0D ‘X ‘IT14)ANVHILO LNIYd duyap#

Ix
‘u‘|a‘e Inq Jans| Aue aq ued Y1 Y11 o}
9p02 |IDSV dU} SI 3A0D UdY},LIDIA YL 1%, Sem uoeayidads sy Ji
‘0 S1'3A0D UdYY,LID1A%. 1SNl sem uonedyioads aus ji

‘uoissaldxa
7L ue sI X "X puelado uononiisul ue 1o} XejuAs Jajquiasse
9yl ANV3IHL1S weals oIpis 0} —:Qﬂzo 0] Juswajels UE:OQEOU DV«

_ _ _ (# == (4VHO))
\ (4VHO)d AIMVA™LONNd” ANVYIdO™ LNIdd aulep#

I+ (ONDFY‘TNH)dOd_93H_LNdLNO_NSY duldp#

/x (ONDIH'TTIH)HSNd 93H LNALNO WSY 8UldP# «/
/x "@sn 1,uop am Tey) sbai urenad oy pasn

Ajuo are Aay] ‘susui dod pue ysnd asay) pasau L,uop am JoyL UQ «/
/x "9p02 ISk} A19A aq Jou paau }

joels ay) uo Jalsibal e dodyysnd 03 usul ue Indino 0} Moy SI SIYL «/

{udd. .SOL. ".diNL. .dOL.}
\ SSNYN YILSIDFY suyap#

/« "abenbue)

Ja|quiasse ojul Ja)idwod sy} ul siaquinu 13)siBal saje|sues

Jeym si siyL ‘JueIsuod Buils O e se auo yoea ‘siasibal
auIydeW 3y} J0} SaWeU S Ja|quiasse ay) Bulureyuod 1azi

+

/.]

[NAINO UONINASU| 4 LYINHOS HITGINISSY
/

NOILOIS LINI”SVH dulap#

Jx "(++D 10} papaau Ajuo)

Jlea ,urew, Aredassauun ay} jo pu bumab jo asodind sjos ayx

10} 9peW S| dUaP YL "I9|quIasse Joy L dy} Ul Uonaas yul Aue
aney Ajlenjoe LUOP S “UeW™ _ |[BD 10U [|IM UTew ‘PauLap Ji «/

/,]

[x<UoONEZI[enIU| 10§ SOIOBN xx: LVINHOL HITANISSY x4/

/. /

/. /

[xxUONBZIEIU| 4! IVINHOL HITENIASSY ¢/

/,]

(((oNT13avT) ‘@WVN) WP%'S%. ‘(LNdLNO)) Auuds
\'(0T + (FNVN)) uais) edojfe (x feyd) = (LNdLNO))
\(ONT38VT ‘IAVYN ‘LNdLNO)FNVYN ILVAIY LYINHOS NSV aulap#

/% "I[ed Yoed 10} JUSIBHIP SI yolym sabajul ue st ON13GV1
“JINVN paWeu a|qelleA d11els [ed0] B 10) dWeu-1a|quiasse ue
Buiureuod (edoj/e ynm apeww) Bulls e LNdLNO Ul BI0IS

(WNN *XI43¥d *.P%S%+. 138VT) Sulids
\(NNN‘XIF3Hd 138V 1) 139V T IYNYILNI ILVEINID WSV dulep#

Jx ,WeU S|quIasSe, UM INdINo 1o} 3|qeNNS SI SIYL
'S BU} UILIIM JaquInU 81 ST AN PUE [8qe] JO SSe|O 8y} SI XI4Tdd
8I8UM [S0e| PaIaqLINU [eUIBIU| U JO SWeU Jai |[0quiAS 8y}

739y Buls ay) o1l 810)S 0} MOY SI SIYL

{
\ (3714 .u\) sindy

Pagl127

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

d

, continue

thor.h

A2

apow|d IAOW NOILONN4 8uyap#
/+ "apow s,91Aq & XU IWIIN 3y} aAIb 0s
(sasodind Buixapul Joj) ssalppe a)Aq e S|
[e2 © Ul SSaIppe UolouN} v «/

apow|Q apowd duyap#
J+ "9pOW suIydBW SIY) JO S193[q0 Jayio Aue pue sislod usamiag
uonaUNSIP JBYMN) OU SaxewW Ja|Idwod ay) ‘|1 Jo uonelaualb Jayy
‘aney siayuod yey) apow aulyoew ayy Ajoads /

T (O34dNI ‘034dLNO)NOILYONNYL dOON ATNY.L duyap#
/+ "paresuny Apeaure s)1 Buipualaid Aq 1snl suop si
S)g D3YdLNO 01 SHg DFHdNI Jo Jabajur ue Buneouny Ji T Sl anfeA «/

T XVIN IAOW duyapy#
/x ‘uonoNIISUl 1se} A|qeuoseal auo uj
Alowsw 0] Alowaw Wolj SAOW Ued 3M S3JA(JO Jaquunu Xe /

ONNYL XI4 IMIT ONNYL SNNXI duyap#
/« "duo paubisun ue o0} A|pifeA LUBAUOD OS[e
wnuxiy paublis e 0} HAAUOD Jey} susul dwes ay} sAes ‘pauyap i ‘Bey SIYL «/

ddX3 AId ONNYL ddX3 AlQ” ASY3 duyap#
/« "9sed [e1auab ay) ul op 0} 1SaISea SI 1ey} SPIAIP JO puly 8yl SI SIYL «/

YdX3 ANNOY XId ¥dXT X4~ LIDINdINI duyap#
/« "SiaBa1u] 0} S[eal LUBAUO0D 0} pasn aq 0} uofesado aa1) 3y} AJoads

SNOILYHIdO "ILSIOTY AHOM dulapy
Jx 19151631 B]OYM B Ul SINDD0 SIPOW JUBIBYIP UM suonesadQ «/

/xHONOYHL SAdOYA ISVD dUlap#x/
/x 629056 AILNIWINOD AVMY s/
/x "peaisul [aqe| ynejep ay) o3 sdwn(
usul 8sed 8y} JI } suyap Luog "abuel Jo N0 SI Xapul By} usym
a|qrel sy Jaye ybnoayy sdoip uononasul 8sed ayl Ji siy) auyaq «/

ANILYTIY Od HOLOIA ISVO dULdpH/
/x 629056 QILNININOD AVMY
/« 'SOSSaIppe dINj0Sqe Ulelu0d pPiNoyYs a|qe} ay} Ji Siyl suyap jou oq
*3|ge) 8y} JO SSalppe SY] WOoJj SISSHO ureyuod o)
a|qel a1 s1oadxa uonaNAsul 8sed 3yl Ji Iyl duyaq «/

apow|d IAOW JOLOIA ISVD duyap
Jx "9Ney pnoys ajqel-dwn| e Jo sjuswale
Jey) apow aujydeLW By} S| SIYL 'SWeU dPoW dUIYOBW B 10j SBI[e UY

/, /

[xx "OSIN x/
/

Pag128

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

thor.c

A3

puesado awres ay) Buisn suononJIsul WS 0) J8)aq
s11] 1841 pade|d aq pjnoys puelado ydiym auiuwIlap 0}
‘(Bunes xajdwod uonduny 8y} elA) 8suanbas™ aAeINWWO JWwd
ul pasn s3] "(dod ywa Aq 19s) |[eo dod Nwa 1s83€| By}
ul pasn puelado ay) 0} Jajulod B SUMRIUOD S|qeLBA SIUL «/

‘0 = salp puesado dod dead 1oy jui

/x 'SSJOU Ureap noge uopew.ojul
ploy o3 ajoydaad e ui Ajjeusaiul pasn S| d|qeLeA SIUL «f

‘0 = Isnlpe oels” paau atedwod Joyl i

/x "Indino 8q 0} Spaau T SOLIA & J dwinfpuod aus s|a) Beyy siyL
‘Aeme ejep siyl Mo1y}l 0] paau smojjo Jeyl dwnl feuonipuod sy L
9B 8y} uo ejep mau saysnd 31 ‘Indino si uononisul aredwod e usyma «/

‘ye1as)0” doy 1oy, Ul

J laquinu [age|
' Ag paxapul ‘39N07TId3 NOILONNA ul paaiy pue 395N0108d NOILONNS
3y} Ul paredo|ie Aedre ue s| e 1asyo doy Joyl ayl

‘wajqold dwnl-sso.12 ay) aAj0s 0} ybnoua s feyi Ing “1aye Ajuo
‘(3ndino aney Apeaie am reys apod ay} Ul s}asyo Aue abueyd ued
M ‘al) USUI JUSLIND By} 31043q SI9SYO [eniul Aue arepdn 1,ued am

0S "INdINO SI 9POI IB|GUIBSSE Y} UBYM SUOIIONIISUIl 3y} 19n0 doams
auo axew Ajuo apn 'ybnoyy asualayip Biq e si alayl “Jajulod awely
ay} Buneuiwid uaym (9 Tpeojal) ssed-peojal ayi ul se Aem awes ay}
1N0Qe Ul SYI0M | “UONIUN} Y} Ul [aqe| Ydes Je Jesyo doy Joy) Jo
anjen ay Jalsibal 0] paau am ‘19SY0 [eniul Siy} Jo yoel) deay oL

*0 89 Jabuoj ou |jIm %20|q dIseq

© 10} 189S0 [eniul 3y} pue pablaw aq ued saysnd [ewiou swos

‘uoneziwndo dwnl-ss012 8y} Ul ‘SaWBWOS INg X20|q diseq
yoea jo Buiuuibaq ays ul 0 aq Ajjewou jim 18syo doy Joyl ayL

‘0 =19syo doy Joy i

/x M2€1s Jo do} mau ay) woly (S10[S-4oels)
19SHO BU} SI SIYL S{elS By} dPISUI USPPIY] ||IM Ja)sIBaI-dOL
ay) ‘yoels ayy uo Buiyewos (saysnd Juswnbie rewiou) Buiysnd Usy «/

‘() Bunyes xajdwod i oneIS
‘() 1suodIppe Indino 1oy} PIOA JNelS

‘Jlaquinual” bal, HoYs ulaIxa
‘pale|dwod peojal Jul uIaxa
‘ssalboid Ul peojal Ul uIdIXa

WsBal, apnjoury
L4'suonipuoo,, apnjoul
.4 60231, apnjouy

.4 Blyuoa-usul, apnjouly
LU hye-usul, apnjou
W1, 9pnjoul

U881, apnjoul
J4rbyuod,, apnjpoul
<yoIpIS> apNaUI

J« *10U L UO INdINO BPOJ IB|UIBSSE 10} SBUNNOIANS «/
Ix
M

UOISISA M3N STTTS6 1L ‘OH 00T «

syewal ayep Aq pasinay «

M
GTTTS6 /ISiAbpun sewoy] ‘uossreuuns AueH JOYyNy

%
(saouapuadap oN) Japdwo) «

*

*

(sa1puapuadap ON) BuIyoe

*

%

%

SUON O/l x

*

*

*

oy, syx *

pue -pwrioy), ay1 ul soioew pue suianed Aq pajed M

abesn «

*

sassalppe eisuod bumnding 1SU0Y ™ Ippe Indino Joy} «

ndino aq 0} ale spuelado Alejgle usym puesado unud
siajoereyd indino reyd Indino

a|qewren [eqo|b bunendiuey 19sy0” doy oyl mau 18S
slajoereyd 11ose Indino nose Indino

a|A1s-xay sweisuod indino xay ndino

13181631 9D ay) Buyepdn 29 ajepdn 220U

1ONAISU0D Youms 9 ay) Bunuswajdw sased ndino
uonouny e 0} |[ed 193JIpul & Wiopad rea 19alipui Indino

dwn(jeuonipuod e wiopad dwnlpuoo™ndino

dod xajdwod ur ysnd ajdwis e wiopad ysnd yum dod xsjdwos ndino
Buissaippe xajdwod Aq eyep dod dod xajdwoa ndino
Buissaippe xajdwod Ag erep ysnd ysnd xa|dwos ndino
Buissalppe xa|dwod Aq erep e yae4 yoiay ssalppe xa|dwod ndino
salp puelado yl ani | d peap

yBL Yiys onawiyle swiopad aouanbasT|yse Nwa
uoielado SANBINWIWOIUOU € SWIoMad 92uanbas aANRINWWOI UoU JWd
uonesado SARINWWOD B SWIoHad 82uanbas™ aARINWWOD JW
uoloeNgns e swiopad Qouanbas gns Nwa

uonippe e swiopad 9ousanbas ppe Nwae

13410 3y} 0} puesado auo woly eyep SanoN 3duanbas anow W
paddems aqg p|noo spuelado i 398yD spuesado dems 3oayd
Auxa|dwos s,juswnbie Jo anjeA e sanlD Bupes xajdwod
uwiaped dod e syw3g dod nwa

uiaped ysnd e sywgy ysnd jwa

Anua uonouny ul sanjea bu uj siapuedxa Jul 1oy}

0D J0 18sn Jawloj suindy d-dwnl paubisun Jasn Q39 IXau
a|qeysnd Jo ,dNL, S! lJuswnbie i ani] puesado ysnd 1o dw
puesado dwn(10a1ipul e s| Juswnbie y aniy puesado dwn(10811pur
aAe|al yoe)s SIjuawnbie y ani | puesado aAR[RI HIBIS 4
juawnBie ay) Jo Axa|dwod ays 38yD puesado™ xa|dwod
juswnBie ay) jo Audrdwis ayl 3o8yd puesado ajdwis «
Buiddod 1oy pifea sijuswnbie yi 398y puesado dod
SO S!uawnbue Ji 328yd 0} 8redipald puesado Jsisifal S0} «
.dOL, S uawnbue Ji %98y 03 aedipaid puesadoaisibas doy
dIALL, S1uawnBue Ji 303yd 0} ajedlpald puesadoJalsibas dwy
uonouny Bulpuey Jous [ereq [erejIoy)

2pow|d, St ,2poW, 1 03y 0} 010N X1d 934 dAL «
suonesadQ «

*

“Sl-yrioyy, *

pue -,pwrioy), ul sosoew pue suianed Ag pasn suonouny djgH M
asodind «

*

%

211041 *

Pag129

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

thor.c, continued

A3

(apow ‘do) puesadodwn(30311pul
wi

/x "‘puesado ((aAne[al adasuod) WIIN) NI e Jo puelado
aANe[al Yoels € ‘el ‘puelado dwinf10811pul ue SI 4O J T Winay «f

((((0 'do) dxaX) d~SS3WAAY LNVLSNOD ®® WIN == (do) 3d00 139) i ¥%
1 == 0t / (T ‘do) Bunes xajdwod) uinyai
}
‘opowW apow sulydeW WNU
‘do xu
(epow ‘do) pueiado™ aAre[al oelS
wi

Jx ‘puRISdO SAR|SI YIRIS B SI dO I T UWINdY «f

{
‘(o€ =< (1 ‘do) Bunes xs|dwod) uinial
}
{apow apow” sulydew wnua
‘do xu
(epow ‘do) puelado™xajdwod
wl

Jx "pueiado 10a1ipul ue ‘3] ‘puesado xa|dwod e Sl 4O JI T UINvY

{
‘(o€ > (T ‘do) Bunes xa|dwod) uinal
}
‘opoL apow” sulydew wnua
tdo xu
(spow ‘do) puesado ajdwis
wi

Jx "1211B2I-dO L B} 10 SSBIpPE dANR[aI od/NoR]S B
‘puesado ayelpawi ue ‘a1 ‘puesado ajdwis e SI 4O JI T LNy

{
Xy 190d oels == (0 ‘do) dx3X uinial

0 wnal
(ONI"LSOd =i (do) 3a00 139) #

(0 ‘do) dx3ax = do

{0 uinal
(spow =j (do) 3O~ L39) 4

‘0 winal
(W3W =i (do) 3a0D 139) §!
}
‘apow apow” aulydeW WNU
‘do xu
(apow ‘do) puesado dod
wi

/« 0€1S 8y} 0JU0 JAOW SpOowW JO anjea
e Buiddod 1o} spuess reys puelado piea e sI JO) T uIndy «/

_ ‘(spow == (do) 3O 139 B2
NNNDIY HILNIOd MOVLS == (do) ONOIY B%
93y == (do) 30D L39) uimal
}

‘apou apowaulydBW WNUd

‘do xu
(epow ‘do) puesadoialsibal” so}
w

/x 'IAOW spow jo
oualayal Jalsibal (1ajulod }oeIs) SOL B Sl dO I T ulndy «f

{
“(((do) 3@ON 139 == apouw ||
3POWAION == mUOEv b0
NNND3Y dOL == (do) OND3Y BB
93y == (do) 3405 139) E_aw_v
‘apow apow sulydew wnua
‘do xu
(apow ‘do) pueladoiasibal doy
Wl

/« "AOW 3pow J0 29UIBJa1 J31SIBAI dOL S dO Jl T LMY 4/

‘(apow == (do) 3aOW 139 ¥7®
WNNO3Y dINL == (do) ONOIY 37®
93y == (do) 3005 139) Eam_v
‘apow apow” sulydew wnua
‘do xu
(epow ‘do) puesado ™ alsibas du
Wl

/« "IAOW 9pouW Jo 29UBIa) JaISIBAI AL B SI dO JI T LIy +f

/ /
Jxx :uonduosap aulyoeW By} Ul 4/

JxxSuoISsaidxa puelado yojew uj sajedipald Se pasn suondUNS s/
/ /

{
((3Q00 LIX3 1VLv4) 1xe
{(Bsw *awreusyyIndut *,U\S%U\ HOGE DDD-HOH.L [euIdiu| 1S9, ‘LI3pIS) pundy

‘awreua|y Indul, Jeyd uIsixa

}

‘Bswy reyo
(Bstu) reyeyJoyy
plon

/% :UONOUN} 1IOQe-1011 UMO INQ +f

(xu™ 40 Bas dw : xu™ 1O Bas dwn ¢ apowd == (apow))
\ (Bpow)X LY OFY dNL dulap#

‘0=XxU 40 bas dwi xu
‘0 = XU 1O Bas dwy xu

/x (' s18pURdX® Ul I0UY), Ul PaZI[enIu|)

‘uononnsul dwydod, Buipuodsaliod ayy Buirowal usym uononisul

dun"ysnd, e arowsal 0} |rey |im o dwinf ur ,uoneINdwos s18jep,

uonouny ayl ‘1 INOYUAN “Jenaq yiom uoneziwndo-dwnf

sayew pue Alowaw sanes X 1Y Jalsibal-dNL pareys v ‘spuedxa
Bupesauab-11Y |e Aq pasn aqg 03 ‘13)s16aI-dN L BU} 0} SXH PaJeysS «/

‘0 = puesado dod ise|Ioy} XU JnelS

Jx "SuondNIISUI peoj/aiols Arelodwa) snowsal pue
puy ued uonreziwndo sjoydaad ay) reys os 1ayahoy

Pag130

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

thor.c, continued

A3

‘ST wnal
((x) ON93Y == (puesado”dod Ise|”Joy)) ONOIY B8
(puesado dodTise| Joyl) d” O3Y ¥%
TINN =i puesado dod ise| Joyl %
YILSIDIY IVNLYIA LSV < (X) ONDIY #%8 (X) d O3 4!

(02 : 0 ¢ adwis™ arelpawiwi) uinial
((epowaIOA x) puesadoarelpawwi) 41

}

ta|dwis™ areipawwi jul

X XU
(a1dwis~ereipawiw ‘x) Bunes” xajdwod
uionels

/x *(0z Burey) 1sixa L,Uop uonoN.SUI dreIpaWW e 41 0 ‘(0 Bunel)
a|dwis enxa si spuelado ayelpawiwi ji T S ,9|dwis™ ajeipswwl,

*SUOIIoNIISUI OM] B} BAOWDL
m ajoydaad e ‘Arelodwa) si puelado ay} ji pue ‘1aylo
yoea 0} Juaoelpe puelsado awes ayy Buisn suononisul om) 196
PINOM 8M SP3a29Ns 1l §| “uoiiesado SAIRINWIWOD € Ul ISIl) SW0d
puesado Siyl aew 0} JUeM am uoidNIsul snoiaid ay) ul pasn
sem puesado ays §| “uoireziwndo ajoydaad ay} jo asnedaq si
‘dod nwa 1sare| 8y Ul pasn sem puelado ayy yi Buiel saybiy ay L

‘Bal>orlS™ [enIA ay) ayl| ‘1aisiBal fenuine O

‘Buissaippe 10auipul ‘spuesado Jsylo Og

‘as[e} sI ,9|dwis~ eyeipawiwl, ji puesado ajelpswiwi ue OZ

‘dod " jwa ul puelado ue se Jajjied pasn sem i §i
puelado Jaisibal opnasd e GT

‘puesado aAire|al yoe)s e Jo puesado opnasdyaisibale QT
‘any) si ,9|dwis™ ayelpawiw, JI puelado ajelpawwi ue Q
puesado bBuney

‘sauo xa|dwod 1o} anfeA Jaybiy e pue spuesado ajdwis 1oy
anjeA 1amo| v ‘Buiiel aAie|al B suinias pue X puesado saulwex3

‘puesado ajdwis ul pue spuelado dems 323yd ul pasn uopouny diaH «/

{
‘puelsado = puesado dod ise| oy}
Jx :Bunes xajdwod o} puesado dod Ise| IOy} 18S 4/

(((epow) X184~ 934 dIL
‘apowaIOA “Y38g0T10) XM~ usb) usul nwa
(((epow) X LY O3 dNL
‘puesado
‘apoWdIOA ‘L3S) XU~ uab) usur nws
}
‘apow apow aujydew wnua
‘puelado xu
(spow ‘puelado) dod nwas
pion

J+ "¥9€ls woly puesado, sdod Jeyy uononasul dod e nw3g 4/

‘((puesado
‘(opow) X LY 93Y dNL
‘apowdIOA ‘13S) XU~ uab) usui Hwa
}

‘apow apow” aulydew wnua
‘puesado xu
(spow ‘puelado) ysnd jwa
proA

Jx 9IS uo ,puesado, saysnd yeyy uononasul ysnd e nwg 4/

{
(INNNDIY dINL ‘2powH0 'O3) 1™ usb = x40 Bar"dun
{(INNNDTY dIL ‘Bpowd ‘93d) X1~ usb = xu™ 1O Bal dun
}
() siopuedxa 3ulJoyy
pioa

« 'Spuedxa Bunelsuab-11Y |le Aq pateys

aq 0} ‘1a3s1BaI-dN L dY} 10} S, X1 BY} SZI[emul 0} PaaU A\ «/
/% "0108W SYIANVAXI LINI 8y} Ul pasn "uonouny

Mau AJane aouo pazifeniul aq 0} paau eyl sbuiyy azienu|

/. |
Jxx i[H WS Yoy} ‘'suonduosap s/

xx3UIYORW B} Ul SBUNNOIGNS SB PASN SUOHIUNS 4/
/

{
{(N39 == 9pod || NI == 9p02 || N1 == 3po3 || NL7 == 8p02) uinal

‘(,id " dwn[paubisunTiasn_ 029 Ixau, ul payadxa usur dwnl,) [eye; oyl
as|@
(0 *(usu) NY3LLYd) O¥S™ 13S) dX3X) 300D 139 = 8p0d
(3S73 N3HL I == (((usur) N¥3LLVd) O¥S™13S) 3400_139 3%
13s == ((usu) N¥3L1vd) 3000 139 ¥%
NSNI"diNNC == (usul) 340D 139)

d~dwn("paubisunJasn 029 1Xau, Ul 18SN” 029 1Xau ON,,) [e1e) Joy}
(((usur) Josn™ 029 Ixau = usul)j) §

{9p0d 89P0~ XU wnua

}

M:mc_ XU
(usur) d”dwn[~paubisunT1asn— Q29 1xau
wl

J« "OS[e} dsImIaYl0 ‘paubisun si
(uononuisur dwinf feuonIPUO B) 18SN 032 IX3U dY} JI NI} UINIDY «f

‘((epow ‘do) puesadoysnd ||
(epow ‘do) puesadoaisifas dwsy) uinyal
}
”wUOE wUOEIw:__._omE wnus
‘do xu
(spow ‘do) puesado ysnd 10 dwiy
wl

/« "puelado
ysnd jewuou e Jo puesado 1aisibal dwy ue si 4O JI T UIndy «f

((((0 “(0 *do) dx3X) dX3X) 4 SSIYAAY LNVLSNOD %%
N3N == ((0 ‘do) dX3X) 340D 139 B%

N3N == (do) 3g00 139)

(apow ‘do) pueiado aAe|as 3oeIS) ulnyal

}

‘opow apow” aulydew Wnua
‘do xu

Pag131

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

thor.c, continued

A3

T wnal
‘{(epow ‘ppuelado) dod ywa

‘(((zpuesado
‘(apow) X184 939 dWL
‘apow ‘SNd) xu~uab
‘(apow) X184 934 dAL
‘apowlOA ‘13S) xu~ uab) usul nwa

‘(apow ‘Tpuelado) ysnd ywa

‘(zpuesado ‘apow) Bai 9910} = gpuesado
((epow ‘gpueltado) puesado sjdwis i) ji
/x 1811681 opnasd e elA) peojal 1Isnw am ‘ajdwis
Zpuelado Bupew ur paadoans 1upip spuesado dems %93yd §| «/

‘(T ‘gpueladory ‘Tpuelador) spuelado dems ¥oayd
}

((epow 0 ‘opuelado) puesado JaisiBal™ S0} i) §i

‘[z]spuelado = zpuelado xu
{[t]spuelado = Tpuesado xu
‘[o]lspuelado = ppuesado xu

‘opolw apow” sulydew wnua
‘spuesado, xu
(apow ‘spuelado) asuanbas™ ppe lwa
w

1+ “Arewuou
usul 8y} W [|IM I3|[ed 8y} pue Q uinlal ‘asIMmIBaylO usul ay) op
0] BUOp 8(0} Spaau Jeyl BulYIAISAS N0 USHLIM BABY M JI T LNy

‘[o]spuesado ojui [g]spuelado pue [T]spueiado ppe 0} susul HW3 «/

{

Jx ‘0 UINIBI 4/

{
‘T wmal
‘(((epow) X 14 O34 dWL _ B
‘2pOWAIOA ‘¥3E901D) XH_uab) usui Nwa
‘((tpuesado ‘ppuelsado ‘apowIOA ‘13S) XH uab) usur ywa
1+ (03a 34d) usnd [eWION « }
ESE]
{
‘T wmal
‘(apow ‘opuelado) dod Hwa

((WNND3Y ™ dOL ‘apow ‘'©3Y) XU~ ush _ B
‘apowdlOA ‘94399012) XU~ uab) usui ywe
((epow ‘gpuelado) pueisado 1a)sibaidoy) ji

/+ "usul-dod Ino yum ssaw juop

ssed-zdwnl ay) reyl os usamiaq ur 401 13qgojo e Jwa 0}

aney uayl 9\ "(dO.L) Ja1siBal anfea uonouny ayj ojul 8101S B
Bunelauab are am ‘Apioldxa pasn si JaisiBal O 1 aul I «/

‘(apow ‘Tpuelado) ysnd ywa

/x "181S1681-dINL 8y} wouy Buiddod usyy pue
Ja1s16a1-dIN L 8y 01 Buiysnd 1s1yy Ag anow e nwig 4/
}

((epow ‘gpueltado) puesado ysnd j) ji

{[tlspuesado = Tpueiado xu 1a1sibas
‘[o]lspuesado = gpuelado xu Ja1sibal
}
‘apow apow” sulydeWw WNua
‘spuelado, X1
(apow ‘spuesado) aouanbas™ anow Jwa
i

I« "Alrewlou
usul 8y WS [|IM J9][ed 8U) pUB O UIN}aJ ‘8SIMIBYIO “UsSul 8} Op
0 auop aq 0] Spaau eyl BulylA1ana N0 uanLM dAeY M JI T LINay

‘[o]spuelado ojui [T]spuelado anow 0} sUSUl HWT 4/

{

‘0 uimal

{

T uinal

‘dun = zdoy
‘zdo, = Tdoy
‘1doy = dwn
}
((e1dwis™areipawiwn ‘Tdoy) Bunes xajdwos <
(eidwis areipswuwi ‘gdo,) Bunes xajdwod) ji

‘dun xu
}
tajdwis™ arelpawiw jul
tzdo, xu
‘pdoy xu
(s1dwis™areipswwi ‘zdo ‘tdo) spuesado” dems xo8yd
i

/x "0 @sImuayio ‘paddems si ,zdo, pue ,1do, JI T uindy

‘puesado
x9|dwo2 e se pajeal) si } 8simIaylo ‘puesado sjdwis enxs ue
se pajeal s| puesado arelpswiwi ue ‘T s adwis” ajelipawil, ji

*9p02 193.1109u1 82npoud
1M uoireuiwa Jayulod awely ayy ,zdo, ul dn spua puelado ue
yans J| *(918 J8yuiod xoels) Jasibal renuia ue si xa|dwod enxg

'SSalppe aANe[aI-40elIS/Od € 4o Ua)siBal-dOL auy ‘(sauo
fenuiA Buipnjoul jou) sialsifial opnasd |je ale spuelado ajdwis

*,zdo, ynm uonesado
a|dwis e op 0} pue ,tdo, xajdwos e ysnd 03 Janaq S
sJojesado aAeINWWOI [[e 104 *,zdo, ojul suo ajdwis Jsow ayy
pue ,tdo, 01 panow si ,zdo, pue ,Tdo, jo pueiado xa|dwod 1SOW dY | «/

{

{0€ uinal

‘0 uimal
(431S1934 IVNLHIALSYT => (X) ONOIHY 5% (X) d OFH) #

‘0T uinal
(((0 %) dX3X) d 3AILYTIY MOVLS HO Od % WAN == (x) 300 139 ||
(Y3LS1939 IVNLHIA_ LSV < (X) ONO3N ||
NNNDIY dL == (X) OND3Y ||
NNND3Y dOL == (X) ONOIY) 3% (X) d OFY) #

Pag132

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

thor.c, continued

A3

‘apow | = spouw apow” sulydew wnua
‘[z]spuesado = zpueiado xi JasiBal
‘[Tlspuesado = Tpueisado xu 1a1s16a1
‘[olspuesado = gpuesado xu 1a1s1631

‘spuesado, X1
(spueiado) aosuanbas™|yse jwa
wi

1« "Arewiou
Usul 8y WS [[IM J9][ed S} PUB O UIN8J ‘BSIMIBYIO “Usul 8y} op
0] 8UOp 8q 0} Spaau Jey) BuIyIAIaAa INO UBNLIM aARY M JI T UINdY

‘|use 10} SUSUI HWT +/

{
T wnal
‘(apow ‘ppuelado) dod jwa
{(((zpuesado
‘(apow) X 14 934 dINL
‘apow ‘apo2) xu~uab
‘(opow) X 14934 dINL
‘apowaloA ‘13S) xu™ uab) usui nwe
‘{(spow ‘Tpuelado) ysnd ywas
‘(zpuesado ‘spow) Bai 9210} = gpuesado
((epow ‘gpueiado) puelado ajdwis i) ji
Jx 19151621 opnasd e elA }| peojal 1snw am ‘xa|dwod si zpuelado J|
‘[z]spuelado = zpuelado xu
‘[t]spuelado = Tpuelado xu
‘[o]lspuelado = ppuelado xu
}

{9p09d 8p0od”~ XU WNUd

‘apow apow” suydew wnus

‘spuesado, xu
(9po9 ‘epow ‘spuelado) sousnbas” aAEINWWO ™ UoU™ WS
i

1+ “Arewuou
usul 3Y} WS [|IM 13][ed 3y} pue Q UINjal ‘SSIMIBYIO “USul dy) op
0] BUOp 8(0} Spaau eyl BulyIAIaAS N0 USHLM dABY M JI T LINIdY

‘don ‘Ald
JO BUO B¢ UBD ,3P09, “USU| SAIFEINWWOD UOU [BWIOU € 10} SUSUl NWT «/

{

T winal
‘(epow ‘opurelado) dod nwa

‘(((zpueisado
‘(opow) X LY O3H dNL
‘apow ‘apo2) xi~ uab
‘(opow) X LY 93H dNL
‘apowdIOA ‘13S) XU~ uab) usui Hwa

‘(apow ‘Tpuesado) ysnd jwa

‘(zpuesado ‘spow) Hal 8210} = gpuesado
((epow ‘gpuelado) puelado sjdwis i) ji
/« 19151621 opnasd e elA 31 peojal 1snw am ‘ajdwis
zpuelado Buppew ur paadans 1uplp spuesado” dems 0ayd J| «/

‘(T ‘zpueladory ‘Tpueladown) spuelado dems 3oayd

‘[zlspuesado = zpueiado xu
‘[tlspuesado = Tpuelado xu
‘[o]spuesado = gpuesado xu

{9p02 3P0~ XU Wnua

‘apow apow” suIydew wnua

‘spuesadoy xu
(apoa ‘apow ‘spuesado) aouanbas™ aAneINWIWOD HWS
L}

/x “Arewiou
usul 81 HWa [|IM J3|[ed 8y} pue (uinial ‘asIMmIBylO usul syl op
0] SUOp 3q 0} SPaau Jey) BulylAIaAs 1IN0 USHUM BABY M JI T ulnley

"dOX “HOI ‘aNV ‘L1NI Jo
BU0 9 UBD ,8p09, *I0Jelad0 SANRINWILIOD [BWIOU © JO) SUSUI NWT 4/

{

T winal
‘(apow ‘gpuesado) dod Hwa

‘(((zpuesado

‘(apow) X184 934 dIAL
‘apow ‘SNNIN) XU~ uab
‘(apow) X LY 939 dAIL
‘apowlOA ‘13S) X1~ uab) usui ¥

((((epow) X LY O3 dINL
‘zpuelado
‘apow ‘SNNIN) X1~ uab
‘(opow) X LY 93Y dNL
‘apow|OA ‘13S) X3~ uab) usui Hwa
(paddems) yi

‘{(epow ‘Tpuelado) ysnd nwa

{(zpuesado ‘spow) Hai 8210} = zpuesado
((epow ‘gpueiado) puesado ajdwis) ji
/x "191s1621 opnasd e eI)1 peojal Isnw am ‘ajdwis
zZpuelado Buiew ul pasdons 1uplp spuelado” dems 308y J| «/

‘(0 ‘zpueisadory ‘Tpuelador) spuelado dems xoayd = paddems

‘paddems jui
‘[z]spuesado = zpueisado xu
‘[t]spuesado = Tpuesado xu
‘[olspuesado = gpuesado xu

‘9powW apow aulydew Wnua
‘spuelado, X1
(apow ‘spuelado) asuanbas™gns Jwa
wi

/x “Ajrewou
usul ay) HWS [[IM J9][ed dy) pue O UINdl ‘SSIMIBLIO "usul ay) op
0} aUOp aq 0} SPaau Jey) BuILAIaAS INO USHLIM 9ARY M JI T UINRY

‘[o]spuelado oy [z]spuelado ynm [T]spueiado 1oengns 0} Susul NWT /

{

/« "9S€2-S0) B} Bulpuey SOLIN, USUI [e109ds © S| I8y L «/ ‘0 UInal

Pag133

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

thor.c, continued

A3

{
{(19spo® ‘,.0% XdOd.) usul” wse ndino
‘(0 ‘.dON.,) usui_wse ndino
‘(T ‘puesado) yoiay ssaippe” xa|dwod Indino = 19syo

19SHo XU

}

‘puesado xu
(puesado) dod™xajdwos Indino
proa

Jx "dod 10311pul Ue B3ew o} suonanAsul INAINQ »/

{
{(19sP0% ‘0% XHSd.) usul” wse ndino
‘(0 ‘.dON.,) usul"wse ndino
‘(0 ‘puesado) ya1e)~ ssaippe xo|dwod Indino = 18syo

19SHo XU
}
‘puesado xu
(puesado) ysnd~xajdwos ndino
proa

Jx "@AIRe|21 10a1IpuUI-Alowau |je ‘al ‘alay pajpuey aq isnw
urensuod-,0, ayl buikjsies Jou sassaippe Alowsw pifeA |y

"ysnd 108J1pul ue axew o0} suondNAsul ININO

{

RESTRTIEY]

(0 “.T SOLI.) usur_wse ndino
‘(ssaippe® ‘,.0% HSd. : .02% HSd. ¢ Beydod) usui wse ndino

{
XU QISU0D = 18SH0
X= ssalppe
}
as|9
{
(T X) dX3X = 19sH0
0 %) dx3aX = mmm%uﬂ
(sN7d == (x) 300 139) #
‘(0 ‘puesado) dx3x = X

‘(puesado *,:ya1a)” ssaippe” xajdwoa ndino ur puesado WIW UON,,) Usul” [ere}
(((0 *puesado) dXaX) d IALLYTIY LOTHIANI WIN i ||
W3W =i (puesado) 340D 139) §!

RESTIORG]
‘ssalppe xu
X XU
}
‘Beyydod Jut
‘puesado xu
(fepdod ‘puesado) yoiey ssaippe” xa|dwod Indino
X1 olels

Jx "0 @sImiayio ‘puesado ue Bumndino
USYM papasu S| T+ JO 19SH0 elixa ue ji T si ,Beydod,
-dodjysnd~xajdwoa Indino ur pasn uonouny djgH «/

Jxx:SUSUI-IB|QUISSSE WS Yy} ‘'suondiuosap s/
Jxx3UIYORW By} Ul SBUNNOIGNS SB PAsN SUONOUNS xs/
/. |

{

‘0 uimal

T_” uinmsail
(T-2Ho ==THO) §
(T (0 *X) dX3X) dXIX) TVALNI
0¢ ((0 %) dX3x) 4 934) = zHo
(((t (0 ‘puetado) dX3X) dX3X) TVALNI
0 ¢ ((0 *puesado) dX3x) 4~ 934) = THO

'ZHO ‘THO LNI 3AIM ™ LSOH
}
(((0x) dX3X) d IAILVIIH NOVLS BB
N3N == (X) 3400 139) 4!

(0 M) dX3X = X XU
}

as|g

T uinal
(((0 Sun) dx3ax ‘puesado) d™renba™xu) 4
}
((((0 *puetado) dX3X) d IAILYIIY MOVLS 8%
NN == (puelado) 340D 139D %% 99p aid) i) 4
(@v3a 93y == Ojull) aNIM ILON 93 #
((T Sput) dx3x =>juil Sul t(usul) SILON™ 93y =>jul)) 1o}

”v_r___ XU Lmnm_mwh
}
‘oap aud jul
‘puesado xu
‘usul Xu
(09p~aud ‘puelado ‘usur) d pesp
w

Jx "Burredwod a10jeq T Aq pajuswaldsp aq ||IM Salou-peap

BU) Ul SISSIPPE SAIBIBI-IBIS (e ‘T S D3A 3dd # “(oers ay

0} 1no paddems Jajsifal e) puelado ssaippe-Alowaw e 1o puesado

J81s1ba1 & Jayie 8q Ued ANVHYIMO "ANVHIJO Bulyorew slou-avaa o3y
' S| 818y} 41 ‘a1 ‘NSNI Ul SBIp ANVHIJO # 019ZUouU WINBY «/

/ /
[:9|oy-daad ul ‘suondiuosap s/
JxxdUIYIBW B} Ul SBURNOIGNS SB PAsN SUORIUNS xx/

/. |

{

Jx ‘0 UINBI o/
T uinas
‘{(apow ‘gpuelado) dod ywa
‘(((zpuesado
‘(epow) X1 DI dWL _

‘apoul ‘14IHSY) X1~ uab

‘(apow) X 14939 dNL
‘apowloA ‘13S) X1~ uab) usul ywe

‘(epow ‘Tpuelado) ysnd nwa

Pag134

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

thor.c, continued

A3

anfeA LNITLSNOD @Y L “Huwij Jaddn 8y Lyim aredwioD «/
{

‘(spuesado ‘,5% 1aay.,) usul_ wse ndino
‘((([rlspuesado) TYALNI)- ‘@powAIOA ‘LNIT LSNOD) X1~ udb = [g]spuesado
}
(0 =i ([t]spuesado) TYALNI) §t 8|2
jlsases indino ui T puelado ebay|l,) feves Joyy
(LNI"LSNOD =i ([tlspueiado) 300 139) #
[+ 'PUNOQ 13MO| 38U} 10eNgNS 4/

}

‘spuesado, xu
(spuelado) 1sasea Indino
pioa

5

Ix
*(93uns ul spow|d 03 pabueyd)
uonannsul 1hased e A|[eal s| uononiisul 1Sased ay L

0} 06 0} 73gv1 3A0D 8y} S! ¥ puelado
'a|ge) 8y} 10} 138V Q0D S! € puesado

punog WNWiuiW - punog wnwixew ayj si z puelado
punog wnwiuiw ay) si T puelado
xapul s| 0 puelado

*abuel Jo 1no xapul

:uononnsul ysnd
Bunteys ay) 1daoxa ‘1Sased, ue ayew 0} suononisul INdinQ «/

‘(0 ‘.dON,,) usui” wse ndino

‘(0 ‘.2 1aav.,) usur wse Indino
(0 ‘.Od ¥dOd.) usuiwse ndino
(0 '.T 1S.) usul” wseIndino

[e0 10aJipulIndino Ul Ssalppe pajoadxaun,) usul [erey
ESE]
‘(ssaipper® ‘0% HSd.) usul” wse indino
(((0 *ssa1ppe) dx3aX) d IAILYIIY HOVLS HO Od 3%
NIW == (ssaippe) 340D L3D) #

‘(ssalppe

‘(ssaippe® ‘,0d ¥HSd.) usul” wse ndino
‘(apowid) XLY 0LSNOD = 18SH0 Xu

}

‘ssaippe xu
(ssauppe) [[ea 10a11pul Indino
proa

Jx "UONONASU |[e2 B JO INoIAeyaq Y} aye|nwa o} paysnd aq
1M 13181681 Od BUL °|[ed 10a41pul Ue dXew 0} suononisul iIndinQ «/

{

{

ealq

‘(,dwn(puosTIndino uj apoa jo adAy Buoim,) [eres Joy)
Jnejep

ealq

‘()= 190er® ‘0% JT74C.) usul” wse Indino
‘N3 8sed
137 ased

Nealq

‘(121" 1aqer® ‘0% 39Hr.) usul- wse Indino
N3O ased
139 ased

yealq

‘()a171aqer® ‘0% L74r.) usul”wse Indino

‘NL7 9sed
117 aseo

Healq

‘(1217 190er® “.0% 1O¥C.,) usul_ wse ndino
‘NLO ased
19 ased

‘ealq

‘(Jai71eqer® .0% IANYC.) usul wse Indino
‘3N ased

Healq

‘{(Jar19qer® “,.0% O3JMC.) usul- wse ndino
:O3 ased
}

(puod) yoms

{(puod) UoNIPUOI BSIaABI = PUOd
(pasianal) ji

‘Josyodoy Joy = [xapullye1asyo dol Joyx
/« :|90] SIU} UM 00|q dISeq BU} 104 Josyo doy oyl feiul 8y arepdn

‘(1oresado) 30D 13O = PUOD 3P0~ XU WNUS
‘() wnu~jage| 17186 - (Jai”|age)) YIFWNN 1391 IA0D = Xapul ul)
‘pasianal
t10yesado xu
‘Ja1” |age| Xu
(pasianai ‘iorelado ‘Jai” |age]) dwnlpuos ndino
pioA

/« "PSIaA31 8q 0} S| UONIPUOD dwnf 8y Ji T SI PasIaNal,

‘sajoydaad swos ui pue ,dwnlpuody, usui auysp
ul pasn ",8po2, adA} Jo dwnl feuonpuod e 1oy suononasul INAINQ «/

{
‘(19507 *,.0% XdOd.) usul” wse ndino

‘(spuesado ‘,T% HSd.) usul_ wse ndino
as|a

‘(spuesado *,T% IHSd.) usul”wse ndino
((epow ‘[T]spueiado) puelado areipawii) i

‘(0 ‘[g]spueiado) yoiey ssaippe” xa|dwos Indino = 1asyo

/+ "PESISUI UONINIISUl HSd ® Indino

aM I8y INg ‘SMOJ|0} UONONIISUI JON € ‘AjjewloN

“(XdOd 31 Ul HSd ISilj 8} JO JUOI Ul HSd B daney

JUOp am) 1991109 Buissalppe aAe|al 3oels axew 0}
‘0 = Bepdod yum yolay~ ssalppe” xadwod INdINo [[eD «/

‘(0 ‘.xdod apisul ysnd - 4334 \\.) usul” wse ndino

9S40 X1
}
‘apow apow sulydew wnua
‘spuesadoy Xy
(apow ‘spuelado) ysnd yum dod xajdwod ndino
p1oA

J« dod 10211pul 3y} jo puesado ays - [g]spuelado
ysnd ajdwis ay} jo puesado ay) - [T]spuelado
pasn 1ou - [p]spuesado

‘suoneziwndo ajoy-daad ays ul pasn “dod 10a11pul ue
apisul ysnd ajdwis ue axew o} uonanasul INAINQ «/

Pag135

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

thor.c, continued

A3

H([nd *.\9%.\ SYLVAN. ‘aly) punidy
(0 == seyep™jo™ azIs) JI

}
(zzT > [1nd 9% 2€ =< [1]nd) 41

}

(++1:ug| > 1 0=1) J0}

!0 = seyep Jo azIs i
HRLY]
}
RIETRU]
d, feyo
Ol 3714
(ua| ‘nd ‘ajy) nose ndino
pioA

2T SHVHO XVIN_ SVY.Lvd duyap#

Ix
ovlivd
u®’uHa SYLVA

L WM

i(sreyd SYVHO XVIN° SY.Lvd
JO wnwixew e aAey ||Im MO SY1vVA sumwv SIY3 91| SY00| SQSD ay
Jo ajdwexa [eadAl v “11DSY LNdLNO WSY Ag pasn “Buuis e Indingo «/

{
T HZ#9T-., BlY) puudy
as|9
X0 7® (U-) ‘WLX0 72 (9T << (U-)) “#X¥0% XyO%#IT-. ‘dly) puudy
(00000008%0- =i U) J1 asfd
(X0 B U ‘WIX0 B (9T << U) "#Xp0% XrO%HIT. u_ﬁ_c :c_:w
Oo=<u)j

(X) IVALNI = U INI"3AIM~ LSOH
}
X XU
Bl 3714
(x *ay) xay Indino
pion

Jx ‘Yewloy-xay ui puesado ue juud ./

{
{
{(usur ‘00" arepdn~8on0u Ul Jou3,) usul [ele}
Jnejep

Nealq
‘oIS = H@:E?m:ﬁmum\oo
‘MO1443IA0 ON 00 =| sbejy'sniels 0o
'LINITSNLYLS 0D

‘JHUVANOD DD ased

pealq
_{
{1sep = TanfeA'snjels 29
}
(WNNDIY dINL == (215) ONDIY %78
(215) O34 B%®
INNNO3Y dIL == (TanfeA'sniels” 99) ONOIY 8%
(Tenfea'sniels 00) 4 934 B
TaneA'sniels” 29) Ji
/« "ureBbe 0) paiajal aq Janau
Algeqoud |im puesado Bal-dwy ayl Ing ‘uononisul 1sa}
Buipadons e ul pasn aq ybiw puesado mau ay] “puelado

Jxx

MaU 8y} 0} TanfeA 1as uay} ‘Bal-dwy ays sureluod
TanfeA pue puelado mau e 0) paidod si Bai-dwy ayy §|
:Ad0D 00 ased

‘yealq
‘[Tlpuesado Bodai = ganjeA'sniels 92
‘[o]pueiado Booal = TanfeA'snlels 02
‘MOT443IAO ON DO =| sbeyysneis o
‘LINI"SNLYLS 0D

'Z13S 00 ased

Nealq
‘[o]pueiado Bodal = TanfeA'snlels 02
!MOT443A0 ON 00 =| sbejysniels 00
‘LINITSNLYLS 0D

T13S 00 9sed

‘Yeauq
‘d3ONVHONN 00 8sed

Nealq
‘MOT4H3A0 ON OO =| sbeyysnyels 00
‘LINI"SNLYLS 20
4389070 00 wmmw

(09) youms

‘(dxe) OMS™ L3S = 2Us xu

‘(dx8) 1S3 13S =1s8p xu

‘(usur) 097 upe 186 = 90 997 UNe WnuUa

‘usul xu

tdxa xu
(usur ‘dxa) 29 eyepdn aan0ou
proA

‘ ‘
OSIN v/
/

{
‘(spuesado ‘,dON.,) usul” wse ndino
‘(spuesado ‘,dON.,) usul_ wse ndino
‘(spuelado ‘, T X¥r.,) usul- wse ndino
/« (3101 BY} JO SSBIPPR BUI) PIOM-Y LY 1511} 8U} diis 0}
XHC 3y) 01 usnIb si T Jo 18sy0 uy “(auo syl 03 Joud
susu| g do}-}oe)s ul SSaIppe) :9|qel au) BIA 19alpul dwng ./

‘(spueiado ‘,dON.,) usul_ wse ndino
‘(spuelsado ‘, T SOLIA.) usui wse ndino

‘(spuelado ‘,£9% @@y.) usui wse ndino
/+ (31q1 BY) JO SSBIPPE BY) SUIEIUOD B|ge)
By} Ul pIOM-Y/ LA IS4l Y1) B|qe) Y} JO SSaIPPR BU) PPY «/

‘(spuelsado ‘, % 19YC(.,) usui” wse ndino
Jx “190e| abuel Jo N0 Xapul 0} O Jou Ji dwinr ./

‘(spuesado ‘, T SOLN.) usul” wse ndino
‘(spuesado *,0 dIND.,) usul_ wse indino
‘(spuesado ,0 |HSd.,) usul” wse ndino

‘(spueltado ‘,z% NdIND.) usui_ wse ndino

‘(.its@sea Indino ul z puelado [ebay||,) rerey Joyx
((((0 ‘[eIspueiado) dxax) d~SSTHAAY INVISNOO B%
NIW == ([z]spueiado) 340D L39D) i) #
[x "JUIRIISUOD-pW ay) >Q _oon.gcﬂwcoo ayrul SQ S|

Pag136

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

thor.c, continued

A3

}
((¥) " 93) y 8spp
{
ealq
‘(a1 ‘opo2)oIndy
2Jnejap
ealq
‘(311 ‘.dONNU\,) sindy
(T == () yibus| aouanbas igp) I
‘(314 ‘. dONNUIGONNU,) SIndj
(0 == () ybus| souanbasigp) i
/x "10Is Aejap sy 1oy Buiyiou s,a18u1 1 ,dou, B INAINO +/
L #, 9seD
}
(8p02) youms
(MNN==x) 4
}
‘9p09 Jul
X XU
‘8l 3714
(8poa ‘x ‘a|y) puesado juud
pion
Ix

'S9SSAIPPE SAR[DIOBIS |[8 0} Z JO 13S0 Uk ppe - A
'S9SSAIPPE SAR[DI-HOEIS |[8 0} T JO 19SHO Ue ppe - Z
HXXXXXXXXHQT ([ewioapexay ul INI~ LSNOD e uud - y

:s19)9) [eoads BUIMO||04 BUI BUYSP 8M oYL UQ
‘U‘|‘0'e INq JeNa| Aue Bq Ued H1T "Y1 10}
3p02 [IDSY Ul S| ,8P09, UBLY , LIDIA ¥ L%, Sem uonesyoads ay) Ji

‘0 S1,8p09, Usyi ,1191A%. 1snl sem uoneoyioads ay J|

“Jewo} Ja|quiasse ul x, puelado ue sindino uopouny ay L
"3l Y 8y Ul ANVHIJO ™ LNIYd 0108w 8y} Ag pajfed «/

{
‘(3 ‘) sindy
‘(X ‘a]) ISUODIppEe INdINO
ESE)
{

‘(unsuoo ‘a|ly) 1SU0dIppe Indino
“(u ‘O1Y) puudy

(0 =< (unsu0d) TYALNI) 4

(/. *O1Y) AuLd)

‘(JoawAs ‘a|y) 1suod 1ppe ndino

(T (0 %) dX3X) dX3X = UNSUOD XU
0'(0 %) dX3x) dxaX = JalwAs xu
[+ ‘Ul 1SU0D 3y Jou
Jal"joquiAs ayy apiaIp Ajuo ‘Jueisuod snid Joi~ [OqWIAS 4/ }
(LNITLSNOD == (T (0 *X) dX3X) dX3X) 340D 139 3%
4347 108WAS == ((0 ‘(0 *X) dX3X) dX3X) 340D 13D 3%
sN1d == ((0 *X) dx3xX) 340D L3O B®
1SNOD == () 300 139) § mw.ﬁm
‘(31 “wp/.) sindy
{(x ‘ally) 1Isuod uppe Indino
I+ ¥ Aq papIAIp Ag 1snw syai” joquiAs IV «/ }
(434 109WAS == (X) 300~ L39D) 4 8s|p
{(x ‘a|y) xay ndino
‘(X) TVALNI) d"¥3L137 HO4 MO LSNOD i 8%
LNI"LSNOD == (x) 300 139) §!
‘(o1 ' VLVAN,) sindy

X XU

Ol 3714
(x *ay) Jeyd Indino
p1oA

Jx "BuipunoJ/UOlRLLIOUI JO SSO| OU B PINOYS 3JaU)

0S ‘salepunoq pIom)ig-z€ 0} paubife are syl |0quiAs |V v Aq
S90UBIBJBI 8SaUY} |[e BPIAIP 0} PaaU am ‘ai04a18y] Buo| 1g-z€ ale
siz1uiod Ino Ing "siaiuiod 914q Q-8 Se S80UBIaa) 9SBY) Sieal)
sAemfe J3|qUIaSSEe AU L "S}ai~ [0qWIAS 10} papaau S| Juauyeas) [e1oads v

‘JUBISUOD [ew|dapexay e
se IndIno sI [eAla)UI-,|, AU} SPISINO S| Fey) Ul ISU0d Y

"X S| 9N[BA 3SOYM
*91Aq T Jo Jabajul ue s|quiasse 0) uoponasul ue sindino uonduny ay L
Bl Y 8yl I ¥VHO LNdLNO WSV 010BW 8y} Aq paj[eDd «/

‘anjeamau = jasyo doy Joyx
{(8nfeAmau ‘,pos = anjeA mau 1asyo dol Joyl N, ‘aly) puidy
(19syo~doy Joys =j anfeamau) Ji

‘[xapuilre 19sy0 do) Joy) = anjeamau
(0 =< xapur 39
() wnu~jage| Xew > wnu”[aqey) JI

‘() wnu~jage(sy 186 - winu” |age| = Xapul

Xapul i
{0 = anjeAamau jul
}
‘wnuaqe] ul
I 314
(wnu~jaqge| ‘a|y) 19syo doy Ioy) mMau” 19s
ploA

1« (0 [1m dneA mau ayy) A}081102 N0 HI0M

pinoys Buiyifians ‘parepdn uaaq sey 1l 81048 1 18syo doy Joy)

ul Aua ue 8sn em JI USAS INg "UONIBIIP PIBMIO) BU) Ul Yiom Ajuo

sayepdn ay Indino s (dwnl Ajreuonipuodun 1o Ajjreuonipuod)

uononssul dwnl e uaym payepdn si Aelte siy| e 1asyo doy Joy)

Ul PaI0Is S| 490|q JISE] YIeas JO SI9SYO [eniul

8y Indino si uononasul dwnl fewiou e usym pajjes si uonauny
SIYL 'an[eA [enul S320|q diseq Mau 8y} 0} 1asyo” do) oy} 18S «/

{
{0 = seyep Jo azis
{(au\, “a1y) pundy
}
(SYVHO XVIN SVLVAd =< sejep Jo azis) Ji

{
{0 = seyep Jo azis
(([nd)Gur) “.u\p%e YLVA., ‘B1y) puridy
f(u\, By pundy
(0 < seyepjo ozIs) i

}
{

ESE)

‘++Selep Jo azis
([nd *,.109%.\'. ‘B1l) puridy
ESE]

Pag137

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

thor.c, continued

A3

‘(X ‘a|y) 1SUCD_IppE INdINO
asje

{

‘(7 » (Gunsuod) TYALNI
Jpusy
‘uPI%.
ESEN
o W%,
LNI"¥3d SLI9 LSOH == LNI"3AIM d3d SLIg LSOH i
‘ally) pudy

“(uwtu 'O1) ULy
(0 =< (3unsuod) TYALNI) #
‘(J2IwAs *ayly) 1suod ippe Indino

(T (0 %) dX3X) dX3X = UASUOD XU
10 ‘(0 %) dX3X) dX3X = J2I1wAhs év
(LNI"LSNOD == (T ‘(0 *X) dX3X) dX3X) 340D 13D ¥%®
434 109WAS == ((0 (0 *X) dX3X) dX3X) 340D 139 B%
SNTd == ((0 ') dx3x) 340D L3O B%®
1SNOD == (X) 3400 139) #)
X XU
By 314
(x ‘a1y) 1su0o1ppe Indino_Joys
ploA anels

Jx "I8|qWiasse ay) Aq pasn 19syo

914 11g-8 83U} 01 19SHO PIOM 1IQ-ZE [ewlou 8y} WoJj) JSAUO0D 0}

 Aq paidinnw ag 1snw jai~ joquiAs ayl 01 pappe 18sH0 ayL ‘Indino

S119SH0 Ue Yum Jai~ joquiAks e uaym 1daoxa 1suod Jppe indino
lewJou ay} sjjeD ‘puesado Indino ul pasn uonouny diaH «/

{
‘(X ‘a|y) 1SU0S Ippe INdINoIoy}
ESE]
‘(X ‘ayiy) xay ndino
(4, == (8p02) ®% INI" LSNOD == (X) 3Q0D LI9) §i asf9

{
‘(.ssa1ppe, ‘a|y)pund)
as|e
‘(19s0” doyuou - ‘J9SHO ‘,P%+S WN\PY%. ‘Bl)HuNd)
(NNNDIY HILNIOd MOVLS == (Ippe) ONOIY
®7% (IpPE) & O3Y) 4 8s|9
{(1esyodor1ous - (T 1ppe) dXIX) TVALNI
‘19sH0 + ((T 4ppe) dX3X) IVALNI
“.P%+S N\PY%., ‘dl)puLd)
(NNNDIY HILNIOd MOVLS == ((0 ‘Ippe) dX3IX) ONOIY 579
LNI"LSNOD == ((T ‘4ppe) dX3X) 340D 139 ¥
((0 “1ppe) dX3IX) 4 93Y % SN1d == (IpPPE) Q0D L3D) 8s|o
‘(Jppe ‘ajy) 1suod Ippe Indino” Joy}
((ppe) d-SS34AAY LNV.LSNOD) 4
(0 X) dX3X = Ippe xu
0:T¢ .2 ==29p0od:
2 ¢ A, == 9pod) =19syo ul
}

(N3N == (x) 300D 139) # wm_w
{([(x) oNO3Ysaweu Bas *,5%,, ‘a|y) pund)
ESE]
(WdINL N0, “31Y) funidy
(NNNDIY dINL == (X) ONDIY) § 8s|e
(((0: T ¢ .z, ==9p02):
2 ¢ K ==29pod) +
1asyo doy1ous . dOL W\P%. ‘Oll) puld)
(NNNDIY dOL == (X) ONDIY) 4l

Pag138

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

crt0.asm

A4

dON

dON

doj uo anjea uinjal ¢ 11H

dON

_ dON

urew 7IvO

(urew™ jo anjeA uinjal) Bal-dO 1 1o} doeds axe ! T- SOLN
Ho)lk)

434X urew™

uj ! #90EH#IT VLVA
SOL Jojanjeafenul : #000T#9T V.1va

Od oy anfeA fenul ¢ Z/oMo viva
0 940

“Jfey uay) pue urew |[ed 0} s| ol s,9pod ayL

*J0Y 1 10} 9p0d dnyiels 8y sulejuod ajy siyL ¢

wse’'Qud

Ix

UoISIsA MaN STTTS6 L 'OH 00T «
M

Ssylewal arep Aq pasinay «

*
GTTTSG6 / IsiAbpunT sewoy] ‘uossreuuns AileH Joyiny
(sarouapuadap oN) Jajidwo)d
(saouapuadap oN) aulyoep
‘paonpoud s aji-109(go
ue “Ja)1dwod ayy Buip|ing uaym pajquiasse S| aji Iyl UBYM o/l
‘paonpoud
3|l 3|qeINaXa A19Ad YNm pasull pue pasn aq [Im 3]y 8y L
Ing S| Ja)Idwod ayl uaym pa|quiasse aq [|IM
abesn

"JoRIIXS J9|quiasse [fews e 1snf ‘suonouny oN
suonelado

*a|l} 9|qeIN0aXa A19AS 0} paxul| aq |1\

19151691-4S pue -SOL -Od JO uorezifeniu|
asodind

wse'Quo

Pag139

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

t-thor

A5

[q0°0uap0algo/(apansal)$ [go:ouoavalgo do
fgo-ouopoalgo/(iipansai)s 4- wi
wise Quo a|jqguasse-
wise" QU wse'Quo/(ipioyng do
wIse QU9 §- Wi
Jip-1oafqo-|reisur wse"oud/(NIpJoyy)$:lqo-ouaoalgo

pi/(ipansai)$ pi/(aployng do
se/(pansai)$ se/(upioy)g do
pi/(pans

se/(1pgns

Jip-108fqo-[eisul pi/(i1pioun$ se/(lipioy)s:pise-|elsul

[go"onop03[qo pise-|relsul:ioyy-|feisul

Joy)-jesul

wiiou-|feisul
#
‘Kouapuadap eixa ue sppe Ajuo mojaq #
Jaxe ayl ul 1sixa \ﬂ_umm.__m Jewuou-|eisul, #
#

foo w0 ayy dnuess aup #

Buipjing pue siduos pj, pue se, ayl Buljieisul Joj sajny #

aujayL u

1} 1 309[q0/(1pansqf)$ Xxi+e powyp * 108lqo/(Ipansa)$ P
\ asj9 ! anuy uay} ! [103fqo/(ipansai)s p- 141
JIp-|reisul

*103[qo, pajed A1030a.1IpgNs BIIXD BJeal) #

1J :anu) as|a
\ :[qo-206q11309[qo/(11pAnsql)$ x-e powyd
\ {[go-296q103lqo/(upansan)$ [qo-096q128[go (vLvd TIVLSNDS
\ ![qo-206q11303(qo/(upansai)$ 4- wi
\ uays ! [fqo-006qup8fqo §-] -
Jip-yoafqo-|ressul [qo206qiA03(qo:lqo-006ai-|fejsul

[go-006q103[go [qo:ToobauAoa(qo Aw

wse' 79960l a|quasse-

wise 7926q1| wse T296qI-1oyy/(11pioy)s do
II-10uy/(u1pIouyn)$:go-00Baipoalgo
#
+006q Buip|ing 10} sa|Ny #

Joyy/Byuod/(11pass)g=ipioyy

[go-206ai-|reisul = 909817 TIVLSNI
[go296qy1a93lgo = DD94dIT

'0094dI1 Buljelsur pue Bul

NQ UBYM S3|NJ [EWLIOU Y} 3SN Juoq #
=22094d11

‘suondaoxa 1o Buiyoid ‘++2 ‘odA eyep Buojbuoj #
ay1 uoddns 01 papaau AJuo S| "papasau Jou SI 3|l 929601 BYL #

=1S3171009411
=T0094IT SSOHD

*3|ly 9:199641| 8Y} JO UoISIaA Alquiasse umo Ino Aiddns 0) pasu o #

Ix#

*#

uoisisA MaN STTTS6 L 'OH 00T «+#
< #

Sylewas arep Aq PasINeY « #

x#

STTTS6 /1SIAbpunT sewoyL ‘uossrieuuns AileH 10yINy « #
x#

*#

(sa1ouapuadap oN) Jajidwo) « #

x#

x #

(saouapuadap ON) BuIYoel x #

x#

*#

< #

SUON Ofl x #

x#

x#

‘018 suonauny Aseiq| INOge uoewIoul [euonippe spaau #
urajyaxeN, ajyaxew s1oy L “1a|idwod ay) Bulpjing usym pasn s #
abesn « #

x#

sa|nJ axew 1sn| ‘suonouny oN wH#
suonesado « #

x#

‘a|y@ewW $,00 NND 01 S9N [euonippy *#
asodind « #

x#

x #

Joyi-1 x#

«l#

Pag140

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

thor-libgccl.asm

A.6

Uap =< pow = 1109

¢T 44710

wou NJgs

T 1S

usp INN

Zsal HSd

2 « (Uap 4 gsal) - wou = pouw

134ds Zsal
usp Ald
uap AIQ gwou = gsal !

T dS

wou Hsd

2 AlQ wou = zwou !
:9sed Aoy aylL ¢

0 uap ‘T wou

dON

dON

TUSp” TWOU L7HC

,uap, uo g ubis 3o8yD !

uels aweli SOHYO
:Twou

dON

0 IHSd

pus dr

0 sAempe ynsai ¢

T uap ‘o wou ¢

Uels awel SOYO
ITuap_ Qwiou

usp Ald

wou Hsd

pus ¥r

AIP [ewIou wiopad ‘0 Y10g Uap pue wou *

0 usp ‘0 wou :

dON

_ dON

Tusp Qwou 1740

,uap, uo g ubis %o8yD !

usp 1s31

dON

Twou 1740

wou 1S31

,wou, uo g ubis 328y :
:welboud jo uers ¢

REEN usp
J34s wou
J3YSUels swely

1381y paysnd s Jojeuiwouap ay ‘Buljed usyp ‘siseweled

N n
43ax elbapn™
uonouny ubife ¢ ovivd
0'Y'T L03S 9pod

T 9SIMIBUI0 USP > wou Ji 0 sAkeme sinsal T T :
(MO JI T +) 2 x S8 = }nsal

uap =< pow = 102
2 x (UBp 4 ZSal) -wou = pow
usp AlQ gwou = gsal
Z Algwou = gzwou
(ynsa11981100 pue UOISIAIP
paufis [ew.ou e op ‘Z YIm Wou apIAIP)
:wyioBe Buimojjoy ayy asn ‘ased Aoy 0 T
osfkemesiynsar T 0
AlQ [ewlou wiopad 00
:uondy usp wou :jo ubis
:9Je Sased JUaIaYIp IN0J 8YL "8Xe) 0} UONJ. By} Saulw.alep !
Jlojeulwouap pue Jojeuiwou ayy Jo (T€ 1q) Hq ubis ay *

‘uoponnsul Alg paubis !
fewou ays jo djay ayy ynm pawlopiad S| uoisiap paubisun

(Joreurwouap ul paubisun ‘ioreuiwou Ul paubisun) gibaipn— ¢

ojnpow 1g-z¢ paubisun - glbpown™
UOISIAIP IIg-zZ€ paubisun - glbaipn™
:papaau aJe suonouny asayl

SIY} U1 uonduny e 0} |[ed e SiIndino DD9D-YOHL Sased asay) uj :
‘uononsul sulydew Buipuodsaliod e yoe] DD9-HJOH.L J0 INdino ayj ul
SUOIONJISUl BWOS "DI9D-HYOH.L AQ papasu Saunnoigqns surejuod ajy siyL

wise 792641

Ix:

UoIsIsA M8N STTTS6 1L 'OH 00T H
sylewal ajep Aq pasinay H

.
GTTTG6 /1SIAbpUNT SBWOYL ‘UoSSIeuuns ALeH Joyny

(sarouapuadap oN) Jajidwo)d

(sarouspuadap ON) aulyoep

SUON o/l

*
x
*
*
*
%
*
x
*
*
*
‘padisap si aremprey ay) Aq payoddns *
j0u uoneiado ue usym Jojidwod sy Aq Ajnoidwi psjied P
x
%
*
*
%
*
x
%
*
*
%
*

abesn

ojnpow 1ig-zg paubisun gibpown™
UOISIAIp 3Ig-z€ paubisun gibapn™
suonelado

"suopouny Areiq uordwi yum Jajidwod ayy apinoid
asodind

Pagl41

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

thor-libgccl.asm, continued

A.6

Ba1 4O si3|[ed 01 (pow) ynsas Adoo :

€ SOLN
¥ dOd
1134

uap x (Uap AIQ wou) - wou, ! 2T 4410
wou NY9s

uap « (usp AIQ wou), ! 2T 4910
usp NININ
dol 1e mou .uap AlQ wou, !

NP SOHO
dON
dON

elbapn™ 11v0
wou Hsd
uap Hsd

134s Ap
(stbaipn™ jo anjea winal) Jaisibal JOL ayl ¢ T- SOLN
:welboud jo uers !

a34ds uap
RERN _ ou
J3dSHeIs swely

151y paysnd si Jojeuiwouap ay} ‘Buljied usypn ‘sisleweled !

:elbpown™
43ax elbpown™
uopouny ubife ¢ oviva

J'Y'T 103S 9pod

uap x (Usp AIQ wou) - wou = pow !

‘elbaipn™ jo djay ayy yum auop si (Japurewsal) ojnpow paubisun

(Joreujwousp jui paubisun ‘Joreuiwou i paubisun) gibpown™ ¢

€ SO
Ba1 4O sia|ed 03 ynsal Adod ¢ ¥ dOd
7134

T1aav

0 IHSd

T SOLN

uap > wou i dwnl {pus 174C

usp diNO

wou Hsd

‘|lom se yiom |jim aredwod paubis e os 18s Ng ubis ays

aAeY Uap pue Wou ylog Ing ‘e1ay Joj pajfed st dwod paubisun uy !
T ©SIMIBYIO ‘USP > WoU JI 0 winay :

T usp ‘T wou !
uelS awely SOH0
:Tusp Twou

dON
Tiaav
pus dr

TS
Zsal mc__mm>w¥ ﬁOE pue Q |[HSd Aeme moiyy ! Z SO1N
pus 1140

(MO JI T +) 2 x ZSBU = }NSBM !

0 dWND
0 IHSd
usp NdNO

Pag142

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

as

A7

JNVN FTIH090$ INYN LNDLNOS AW
\ (IWYN F40808$. =i INYN LNDLNOS.) #
,2lulgo, o1 ayy 198[qo ay) jo swreu ayy abuey)d #

Jipus
109lqo/QvaH 3714r80$ AW (108lgo/avaH 3 114090$ p- i) 4
TIVEL 3T140g0$A99[q0/avaH 3T14rd0$ = INYN 3114080 19
aS|9
108(qo Jipyw (08(qo p- i) j1
TIVELT314080$A99[00 = INYN_I 114090 198
uayr (,TIVYL 3714080$. == .AvaH I1140d0$.) 4
¥3714090$ = TIvdL 3714090 18s
U:314080$ = QvAH 3114090 188
SISIX® #
JIp uoieUNS3P JI 393YD OSe *,31ylqo, By} 1o} Bweudly Y} PINg #

Jipus
[qo 1 Ivd L 1NdLNO$ARIGo/AYIH LNdLNO$ = INYN LNdLNO 18s
9S8
[go rIvd L LNdLNO$A29[G0 = IWVYN_LNdLNO 18s
uayl (VYL LNdLNO$. == .,aVIH LNdLNOS$.) !
EINVNI LS = WVHL_LNdLNO 198
UIWYNITIH$ = AvaH LNdL1NO 1es
:9|qwiasse Jo Indino ay) Jo} aweua|y Yyl pling #

JNVYNITSS$ Wse L INVYNITH$ Aw
XIYNS S°, 8U) 0} BRI BY) BI0ISBY #

wse'IINVYNI4$ SNOILIOTVINIONS b- sjquissse
19|qIassY #

yipus
Tuxa ! LJWSe I3NVYNITIF$ 01 JINVYNITI4$ sweual J,ued “E_‘_om Sse ul o413, oyda
uay ({ wse rINYNITIHS INVYNITISS Aw } i || wse rINYNITI4$ o) §

Jipud
TUXd 1, JNYNIIS$ 31 dY) puy J,ued :3duds se ul 1013, 0ydd
usay (FINVYNITI4$ o

i
s aweua|y, 0} S aweua|y, ay) abueyd 1siiH #

[D¥V TVWNHONS-TIABIES = SNOILAOTVNYON 195
[9dv 3TIdrgoslAbres = 37I4rg0 19s

fipus
T uxa !, 'sjuswnbie jo adA) Buoim :3duos se ul Jou, oyos

uays (LS. =i :INVYNITI4$ 0¥V Oglnbies,) §

[o4v INVYNITIZ$IABIeS = INYNITIL 1S

Jypus
T Uxa !, ’sijuswnbie jo saqunu Buoim :3duds se ul Josig, 0yda
uay (T > odv 0$) 4

ABrex$ = OdY INVYNI 4 ©

T -ABre#$ = OYv 3114080 ©
2 - ABreys = odY 0 @
€-ABreg$ = OV TVINHON ®

#

‘pUBWILIOD d|quasse ay) 0} Ajdalip passed are suondo sjquiasse ay #

#

‘sprenusye ajulqo #

X8)1 aBueyd 1snw o\ “[qo-aweus|l sweu ay) aAey #
‘pueWIWOD B|quasse ay) Aq pajelsuab oy 198(qo ay L #
#

"9|puBY UBD JB|qWIaSSe 8y} XIYNS AJuo ay) syeys #
asnedaq ‘Xiyns wise’, e 196 0} pawreual ag Isnw 3|l SIYL XIYNS #
,S°, & yum Buipua a|iy Indur ay Jo swreu ayy s uswnbie ise| syl #
#

s'awreus|y a|i{qo o- [suondo ajquiasse [ewuou] se #

#

XRJUAS #

#

‘weJboud e #

Bulquiasse uaym (se, aweu ayl aney isnw 1) 1duds Siy) S|jed D29 #
#

" 9|qWasse, Ia|quiasse uapO/10y L a8yl sunt 1duos siyl #

#

Ix#

x#

uolsian MaN STTTS6 L 'OH 00T «#

x#

Ssylewal arep Aq pasIney « #

x#

GTTTSG6 / ISiAbpun sewoy] ‘uossreuuns AlleH Joyiny x #

x#

x#

(sarouapuadap oN) Jajidwo) y #

< #

x#

(saouapuadap ON) Bulyoel x #

x#

x#

,wise’, xiyns yum pasnpoud si ol Jsjquiasse Arejodwa) #
O/l « #

x#

3|l B 9|qUIBSSE 0} JueM) uaym Jaidwod ayy Aq pasn o #
abesn . #

*#

spuewwod XINN isnl ‘suonouny oN #

suoneladQ « #

x#

2lquiasse, o #

Jajquiasse s,Joy 186 pue se, 19|quiasse XINN dPLISAC 01 #
asodind x #

x#

< #

se x#

«/#

#

- Usojulg/ig

Pag143

Issuel

Date:4 December 1995

Document No: TOR/TNT/0028/SE

Id

A.8

{s31araols{suiaaristivindonu

.s41agins 11pqgI, 0yod
,S314r90$:salgo. oyoa
.37141N0$ 9IINO,, 0Yd9

L IVINHONS:suondo [ewson,, 0ysa

MUI{=714LNOY = FHLNO 18S (o == .2:FTIHLNOS.) #
AUl B Yim pus pinoys 3714.1N0 #

pus
yus
Mspua
Mmsyealq
yipue
.T$ TVINHONS. = TVINHON 18s
as|e
.I$ S314r90$. = S3T14rgo 18s
uayy (g0, == ,2:1$.) 4!
Jneyep

msealq
JT$ 1- SHIagIs$. = syiadi11es ‘Yys
- osed

msyealq
T$ = 3741N0 185 Hiys
:0- 8sed
(1$) youms
(0 < ABrexg) ajym

= sdiddinies
=S374ra0 18s
Jure = 37141N0 18s
= TVYINYON 388

#

:syuawnbire asied #

#

‘pueWIWOD Mul| 8y} 0} Ajoauip passed #

are pue suondo xul| [ewlou 8q 0} PalapIsuod ale [qo-, #
ynm Buipua 10 ‘7, 10 ,0-, Aq papaadald jou sjuawnbie ||y #
#

"AUl'e, pawreu aq (|im a1l #

ndino ayy uanib si uondo ,0-, ou | ‘pPapNoUI 8q 0} Ale #
Aio103.1p Areiqi| suo uey) alow Ji suondo -, [eIBASS #

3(g ued alay] "Janeuw Jou saop mHEWE:m‘_m 3yl JO I8pIo ayl #
#

sajulgo [pay 7-] [a14ano o-] [suondo xui reuniou] | #

#

XeJUAS #

#

‘swelboud #

Bunjuil usym (;p], ey sy aney 1snui i) 1duds Syl s|ed D99 #
#

“193Ul| UBPO/IOYL Y} sunt 3duds SIyL #
#

Ix#

x#

UoIsisA M8N STTTS6 1L 'OH 00T «#

*#

sylewas ajep Aq pasInaY x #

< #

GTTTS6 / IsiAbpun sewoy | ‘uossreuuns AueH 10YINy « #
x#

x#

(sarouapuadap oN) Jajidwo) y #

< #

< #

(saouspuadap ON) Bulyoe| x #

x #

x#

x#

paonpoud si 3|y d|geINdXA UY Ol « #

< #

x#

EITEICEGENC] X #

ue ojul Sa|lj-,0°, Ul 0} JUBM)l Uaym Ja|idwod ay) Ag pasn #
abesn x #

< #

spuewwod X|NN Ishl ‘suonouny oN #

suoneladQ « #

x#

“Mjul], Jaxul| S,40y L 196 pue pj, 1axul| XINN SPLISAC 0L «#
asodind x #

*#

< #

pI w#

«/#

#

- Usojulg/ig

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pagl144

APPENDIX B - Diff files of the changes in GNU CC source

Each of the succeeding sections will show the diff file produced when comparing the changed
source files with the original ones. We have followed the convention to save the original source
files by appending an extra suffborg ' onto the file name. The command line given when pro-
ducing the diff files isdiff -c FILE.c FILE.c.org "

B.1 reload.c versus reload.c.org

*** reload.cThu Sep 21 13:06:29 1995
--- reload.c.orgThu Jun 15 14:01:03 1995
*kkkkkkkkkhkkkkk
*rk A353,4377 *rrx
return 1,

}

- #ifdef THOR_RELOAD_CHECK_FOR_CONST

- [* Check the case when a constant expression has been created

but fails to be valid because of a missing CONST in the beginning. */
- if (GET_CODE (ad) == PLUS

- && GET_CODE (XEXP (ad, 0)) == SYMBOL_REF

- && GET_CODE (XEXP (ad, 1)) == CONST_INT)

- A

- /* Add a CONST at the front of the expression and check to

- see if we are successful: */

- tem = gen_rtx (CONST, mode, ad);

- if (strict_memory_address_p (mode, tem))
- {

- *loc = tem;

- return 1;

- }

-}

- #endif

return find_reloads_address_1 (ad, 0, loc, opnum, type, ind_levels);

}

--- 4353,4358 -

B.2 reloadl.c versus reloadl.c.org

*** reloadl.cFri Aug 18 13:52:36 1995
--- reloadl.c.orgThu Aug 3 11:26:39 1995
kkkkkkkkkkkkkkk
*k% 386,397 *kkk
register rtx tem
= gen_rtx (MEM, Pmode,
gen_rtx (PLUS, Pmode,
I #ifndef THOR_HARD_FRAME_POINTER_INIT_RELOAD
! gen_rtx (REG, Pmode, LAST_VIRTUAL_REGISTER + 1),

Document No: TOR/TNT/0028/SE Date:4 December 1995

Issuel

Pagl145

| #else
I /* Changed to work on Thor! */

! gen_rtx (REG, Pmode, HARD_FRAME_POINTER_REGNUM),

I #endif
GEN_INT (4)));
spill_indirect_levels = 0;

--- 386,392 ----
register rtx tem
= gen_rtx (MEM, Pmode,
gen_rtx (PLUS, Pmode,

! gen_rtx (REG, Pmode, LAST_VIRTUAL_REGISTER + 1),

GEN_INT (4)));
spill_indirect_levels = 0;

B.3 reorg.c versus reorg.c.org

*** reorg.cWed Oct 18 13:05:18 1995
--- reorg.c.orgThu Jun 15 14:02:32 1995
*kkkkkkkkkkkkkk
*hk DD41,2257 *rxx
if INSN_FROM_TARGET_P (insn))
return;

- #ifdef THOR_DELAY_SLOT_FIX
- [* Change made to work on Thor. When using two delay-slots
- 'where' can point to a deleted insn. Then emit_insn_before will
- abort. ¥/
- if { INSN_DELETED_P (where))
- emit_insn_before (gen_rtx (USE, VOIDmode, insn), where);
- else
- emit_insn_after (gen_rtx (USE, VOIDmode, insn), PREV_INSN (where));
- #telse
emit_insn_before (gen_rtx (USE, VOIDmode, insn), where);
- #endif

/* INSN might be making a value live in a block where it didn't use to
be. So recompute liveness information for this block. */
--- 2241,2247 ----

B.4 stmt.c versus stmt.c.org

*** stmt.cMon Sep 18 16:15:13 1995
--- stmt.c.orgThu Jun 15 14:08:17 1995
*kkkkkkkkkhkkkkkk
*rk A784,4799 *rrx
#endif /* HAVE_casesi */
#endif /* CASE_VALUES_THRESHOLD */

- #ifndef THOR_CASE_VALUES_SPARSENESS
- /* 10 is the original default value. A smaller value can
- be appropriate if size is more important than speed. */

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel

Pag146

- #define THOR_CASE_VALUES_SPARSENESS 10
- #endif
else if (TREE_INT_CST_HIGH (range) =0
|| count < CASE_VALUES_THRESHOLD
[| ((unsigned HOST_WIDE_INT) (TREE_INT_CST_LOW (range))
! > THOR_CASE_VALUES_SPARSENESS * count)
|| TREE_CODE (index_expr) == INTEGER_CST
/* These will reduce to a constant. */
|| (TREE_CODE (index_expr) == CALL_EXPR
--- 4784,4793 ----
#endif /* HAVE_casesi */
#endif /* CASE_VALUES_THRESHOLD */

else if (TREE_INT_CST_HIGH (range) =0
|| count < CASE_VALUES _THRESHOLD
[| ((unsigned HOST_WIDE_INT) (TREE_INT_CST_LOW (range))
! > 10 * count)
|| TREE_CODE (index_expr) == INTEGER_CST
/* These will reduce to a constant. */
|| (TREE_CODE (index_expr) == CALL_EXPR
% 4891,4901 **
#ifdef HAVE_casesi
if (HAVE_casesi)
{
- #ifdef THOR_CASESI_QIMODE
- enum machine_mode index_mode = QImode;

- #else
enum machine_mode index_mode = Simode;
- #endif
int index_bits = GET_MODE_BITSIZE (index_mode);
rtx opl, op2;
enum machine_mode op_mode;
--- 4885,4891 ----

B.5 jump.c versus jump.c.org

*** jump.cTue Aug 1 15:39:09 1995
--- jJump.c.orgWed Oct 18 12:56:36 1995
*kkkhkkkkhhkkkkhhk
* k% 437,449 *kkk
rtx tem = find_equiv_reg (NULL_RTX, insn, 0O,
sreg, NULL_PTR, dreg,
GET_MODE (SET_SRC (body)));
I /* PRESERVE_DEATH_INFO_REGNO_P doesn't work any more. That's why
I we have introduced this new macro */
| #ifdef THOR_PRESERVE_DEATH_INFO_REGNO_P
/* Deleting insn could lose a death-note for SREG or DREG
so don't do it if final needs accurate death-notes. */
! if ! THOR_PRESERVE_DEATH_INFO_REGNO_P (sreg)
! && ! THOR_PRESERVE_DEATH_INFO_REGNO_P (dreg))

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel

Pagl147

#endif
{
/* DREG may have been the target of a REG_DEAD note in
--- 437,447 ----
rtx tem = find_equiv_reg (NULL_RTX, insn, 0,
sreg, NULL_PTR, dreg,
GET_MODE (SET_SRC (body)));
| #ifdef PRESERVE_DEATH_INFO_REGNO_P
[* Deleting insn could lose a death-note for SREG or DREG
so don't do it if final needs accurate death-notes. */
! if (| PRESERVE_DEATH_INFO_REGNO_P (sreg)
! && ! PRESERVE_DEATH_INFO_REGNO_P (dreg))
#endif

{
/* DREG may have been the target of a REG_DEAD note in

B.6 function.c versus function.c.org

*xx_J../gcc-2.7.0/function.cTue Oct 31 13:37:27 1995
--- ../../gcc-2.7.0/function.c.orgThu Jun 15 23:50:37 1995
*kkkkkkkkkkkkkk
*rk 1937,1947 *rxx

&& (GET_CODE (SET_DEST (x)) == REG

|| (GET_CODE (SET_DEST (x)) == SUBREG
&& GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))

- #ifdef THOR_FIXUP_VAR_REFS_1
- && x == single_set (insn))
- #else

&& x == single_set (PATTERN (insn)))
- #endif

{

rtx pat;

--- 1937,1943 ----
*kkkkkkkkkkkkkk
*** 1986,1996 ****

&& (GET_CODE (SET_SRC (x)) == REG

|| (GET_CODE (SET_SRC (x)) == SUBREG
&& GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))

- #ifdef THOR_FIXUP_VAR_REFS_1
- && x == single_set (insn))
- #else

&& x == single_set (PATTERN (insn)))
- #endif

{

rtx pat;

--- 1982,1988 ----
kkkkkkkkkkkkkkk
** 3583,3595 *rr
I* If -ffloat-store specified, don't put explicit
float variables into registers. */

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel

Pag148

| (flag_float_store
! && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)
I #ifdef THOR_NO_INITIAL_REG
! || THOR_NO_INITIAL_REG
! /* On Thor we do not want to copy the parameters
! to registers when entering a function.*/
I #endif

!)
/* Always assign pseudo to structure return or item passed
by invisible reference. */
|| passed_pointer || parm == function_result_decl)
--- 3575,3581 ----

/* If -ffloat-store specified, don't put explicit
float variables into registers. */
| (flag_float_store
! && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
/* Always assign pseudo to structure return or item passed
by invisible reference. */
|| passed_pointer || parm == function_result_decl)

B.7 config.sub versus config.sub.org

*** config.subThu Jul 6 08:30:14 1995
--- config.sub.orgWed Oct 18 12:38:29 1995
*kkkkkkkkkkkkkk
*k% 135,141 *kk%k
| alpha | we32k | ns16k | clipper | sparclite | i370 | sh \
| powerpc | powerpcle | sparc64 | 1750a | dsp16xx | mips64 | mipsel

| pdpl1l | mips64el | mips64orion | mips64orionel \
! | sparc | thor)
basic_machine=$basic_machine-unknown

Object if more than one company name word.
--- 135,141 ----
| alpha | we32k | ns16k | clipper | sparclite | i370 | sh \
| powerpc | powerpcle | sparc64 | 1750a | dsp16xx | mips64 | mipsel

| pdpll | mips64el | mips64orion | mips64orionel \
! | sparc)
basic_machine=$basic_machine-unknown

Object if more than one company name word.

B.8 configure versus configure.org

*** configureThu Jul 6 08:29:27 1995

--- configure.orgWed Oct 18 12:36:00 1995

*ik D274,2281 ****
tm_file=sparc/sp64-elf.h
extra_parts="crtbegin.o crtend.o"

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag149

- thor-*-*) #Generic version of Thor
This hasn't been upgraded to GCC 2.
tahoe-harris-*)# Harris tahoe, using COFF.
tm_file=tahoe/harris.h

--- 2274,2279 ----

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag150

APPENDIX C - Instruction set for Thor

All instructions found in the Thor microprocessor, with assembler mnemonic, format, hex code,
instruction execution clock cycles, flags affected and possible exceptions are defmiglé b0

Table 10 Thor's instructions set

Mnemonic Instruction Format Hex Code Cycles Flags Exception Remark
ABS Absolute Value 2 73 1 ZN 10,11

ADD Add Integers 2a2b4a 4 01 1 ZN,C,U 2,10,11

ADDF Add Float 2a 2b 4a 4b 10 3 ZN,C,U 2,10-12,14

ADDI Add Immediate 2a 2b 4a 44 oc 1 Z,N 2,10,11

ADDU Add Unsigned 2a2b4da4 02 1 ZN,CU 2,10,11

AND Logic And 2a 2b 4a4b 03 1 ZN 2,10

ANDI Logic And Immediate 2a 2b 4a 44 1F 1 Z N 2,10

CALL Call Subprogram 2a2b4a4 27 2 2,5,10 Push stack
CALLP Call Protected 2a 2b4a4b 34 2 UM 2,5,10 Push stack
CLL Compare Lower Limit 2a 2b 4a 4 0A 1 2,8,10

CLRF Clear Flags 2b 4b 30 1 All

CMP Compare Integers 2a2b4dadb 09 1 ZN,C,U 2,10

CMPF Compare Float 2a2b4adp 15 2 ZN,C,U 2,10,14

CMPI Compare Integers Immediate 2ada 75 1 Z,N

CMPU Compare Integers Unsigned 2a 2b 4alab OF 1 ZN,C, 2,10

CuUL Compare Upper Limit 2a2b4a4b 0B 1 2,8,10

DIV Divide Integers 2a 2b 4a 4h 18 5-20 ZN 2,10,13

DIVF Divide Float 2a 2b 4a 4b 11 15 ZN,C,U 2,10-14

FBC First Bit Changed 2b 4b 3D 1 ZN,C,U 10 Push stack
FLT Float Of Integer Value 2 72 2 ZN,C,U 10

FLUSH Flush Cache 2 40 32-64 4 Privileged
HLT Halt 2b 4a 00,FF 1 4 Privileged
INT Integer Of Float Value 2 71 3 ZN 10,11

JR Jump Relative 2a2b4adp 20 1 5

JREQ Jump Equal 2a 2b 4a 4pb 21 1 5

JRGE Jump Greater Or Equal 2a2b d4apb 22 1 5

JRGT Jump Greater Than 2a2b4afib 23 1 5

JRLE Jump Less Or Equal 2a2b4a4b 24 1 5

JRLT Jump Less Than 2a2b4a4b 25 1 5

JRNE Jump Not Equal 2a2b4a4p 26 1 5

JRX Jump Relative Indirect 2ada 70 1 2,5

LDX Load Indirect 2a 2b 4a 4b 28 1 2,10

MOD Modulus 2a 2b 4a 4b| 17 1 ZN 2,10

MTOS Move Top Of Stack 2a2b4adp 2B 1 2,10 Move stack
MUL Multiply Integers 2a 2b 4a 4b| 1B 4 ZN 2,10,11

MULF Multiply Float 2a2b4a4b 12 3 ZN,C,U 2,10-12,14

MULI Multiply Immediate 2a 2b 4a 4b| oD 4 ZN 2,10,11

MULL Multiply Integers Long 2a 2b 4a 4y 19 4 ZN 2,10

MULU Multiply Integers Unsigned 2a 2b 4a 4b 1A 4 ZN 2,10

NOP No operation 2b 4b 3C 1

NOT Not 2a 2b 4a 4b 2A 1 Z,N 2,10

OR Logic Inclusive Or 2a 2b 4a 4 04 1 ZN 2,10

ORI Logic Or Immediate 2a 2b 4a 4b 16 1 ZN 2,10

POP Pop 2a 2b 4a 4 2C 1 2,10 Pop stack
POPR Pop Register 2b 4b 37 1 4,10 Pop stack, priv. for EOS-TH
POPX Pop Indirect 2b 4b 3B 1 2,9,10 Pop stack
PSH Push 2a2b4a 4 2D 1 ZN 2,10 Push stack

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pagl151
Table 10 Thor’s instructions set
Mnemonic Instruction Format Hex Code Cycles Flags Exception Remark
PSHI Push Immediate 2a2b4a4db 2E 1 Z,N 2,10 Push stack
PSHR Push Register 2b 4b 36 1 10 Push stack
PSHX Push Indirect 2b 4b 3A 1 Z,N 2,9,10 Push stack
RAISE Raise Exception 2 3E 1 Any
RET Return 2b 4b 35 1 2,5,10 Pop stack
RETU Return To Usermode 2b 4b 38 1 UM 2,5,10 Pop stack
SBR Subtract Reversed Integers 2a 2b 4al4b 06 ZN,CU 2,10,11
SBRF Subtract Reversed Float 2a 2b 4aldb 13 3 ZN,C\ 2,10-12,14
SBRU Subtract Reversed Unsigned 2a 2b 4al4b OE ZN,C,U 2,10
SETF Set Flags 2b 4b 2F 1 All
SL Shift Left 2b 31 1 ZN 10
SLD Shift Left Dynamic 2a 2b 4a 4 1C 1 Z,N 2,10
SR Shift Right 2b 33 1 ZN 10
SRA Shift Right Arithmetic 2b 32 1 ZN 10
SRAD Shift Right Arithmetic Dynamiq 2a 2b 4a 4p 1D 1 ZN 2,10
SRD Shift Right Dynamic 2a 2b 4a 4b 1E 1 ZN 2,10
STX Store Indirect 2a2b4a 4 29 1 2,10
SUB Subtract Integers 2a2b4a4db 07 1 ZN,C,U 2,10,11
SUBF Subtract Float 2a 2b 4a 4p 14 3 ZN,CU 2,10-12,[14
SUBU Subtract Unsigned 2a2b4a4b 08 1 Z,N,C,U 2,10
TA Task Accept 2 76 2-9 TSI
TAE Task Accept End 2 79 2 2,10 Pop stack
TAS Task Accept Start 2 78 1 Z,N
TCA Task Conditional Accept 2 77 2-9 TSI
TCE Task Conditional Entrycall 2a 7B 2 TSI 2
TDLY Task Delay 2 7D 1 TSI Pop stack
TE Task Entrycall 2a 7A 2-9 TSI
TEE Task Entrycall End 2 7C 1 z
TEST Test 2b 4b 3F 1 Z,N 10
TPTR Task Pointer 2 39 1 ZN 2,10
TREG Task Register 2 7E 1 Privileged
TSCH Task Schedule 2 6F 1 TSI
XOR Logic Exclusive Or 2a 2b 4a 4 05 1 ZN 2,10

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag152

APPENDIX D - List of C validation suites

By requesting at several newsgroups at internet we have obtained a list of companies offering C
validation suites. These could be of obvious interest if one decide to officially qualify the com-
piler for use in space-borne computer systems.

1) In GNU CC version 2.3.3 a testsuite is included. It can be found at
prep.ai.mit.edyin the pub/gnu/ ’ directory and the file to be fetched is called
'gce-2.3.3-testsuite.tar.gz). This is probably the most interesting
testsuite, since it follows GNU CC's interpretation of ANSI C and supports the
GNU CC'’s extensions to this standard.

2) SVVS - System V Verification Suite also tests the C compiler, especially the
libraries. (From AT&T).

3) ACE C VALIDATION SUITE - Checks the compliance of a C compiler to the
ANSI X3J11 draft standard. Also tests library functions for conformance to the
X/OPEN standard or the SVID where these differ from their draft standard coun-
terparts. The suite consists of over 50000 lines of source in about 600 different
programs together performing over 2000 tests. The ACE C Validation suite is
priced at 15500 dutch guilders (currently approximately $7500).

Contact Ge Gaal atfo@ace.nlor ..!luunet!mcvax!acelinfo

ACE Associated Computer Experts bv Phone: +31 20 646416
Van Eeghenstraat 100 Telex: 11702 (ace nl)
1071 GL Amsterdam Fax: +31 20 750389
The Netherlands

4) ACE Associated Computer Experts bv provide SuperTest, the ANSI-C test and
validation suite. Information available at address as below:

M.P. Roodzant emailarco@ace.™
ACE Associated Computer Experts bv

van Eeghenstraat 100 tel: +31 20 6646416
1071 GL Amsterdam fax: +31 20 6750389

The Netherlands
5) MetaWare sells a small C validation suite. $2,000

903 Pacific Ave, Suite 201
Santa Cruz, CA 95060
(408) 429-6382

6) The Plum Hall Validation Suite for C $10,000
Plum Hall
1 Spruce Ave.
Cardiff, NJ 08232
(609) 927-3770

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag153

Plum Hall

PO Box 44610

Kamuela, HI 96743

808-882-1255

plum@plumhall.confDr. Thomas Plum)

Plum Hall also has a subset of the test suite called 'sampler’ which is labelled as
'freeware’.

7) The PERENNIAL Validation Suite for C Compiler Validation
PERENNIAL
4677 Old Ironsides Drive, Suite 450
Santa Clara, CA 95054
(408) 727-2255

Perennial

4699 Old Ironsides Dr.

Suite 210

Santa Clara, CA 95054
408-748-2900
support@peren.corfcustomer support)

Perennial sells the Perennial C++ Validation Suite.

Try contacting Perennial ahfo@peren.com

8) C Compiler Torture Test - Checks a compiler against K&R. $20
The Austin Code Works
11100 Leafwood Lane
Austin, TX 78750-3409
(512) 258-0885

9) HCR offers a C Test Suite in various forms (50,000 tests to 350,000 tests)

HCR Corporation Phone: (416) 922-1937

130 Bloor Street West Telex: 06-218072 HCR TOR
Suite 1001 Fax: (416) 922-8397
Toronto, Ontario

Canada

M5S 1N5

10) RG Consulting, RoadTest

RG Consulting

396 Ano Nuevo #216
Sunnyvale, CA 94086
408-732-7839
rfg@netcom.confRon Guilmette)

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag154

Complete information on RG Consulting’s ANSI C and C++
compiler test suites is available for anonymous FTP from

ftp.netcom.conn the pub/rfg/roadtest " directory. (If you
cannot do FTP, let me know and I'll be glad to E-mail the
file to you.)

Free samples!
11) Modena Software atnodena@netcom.com

Modena Software sells the Test++ Validation Suite.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag155

APPENDIX E - Installation of GNU CC for Thor

Here follows a step by step scheme describing what kind of actions you must perform in order to
install the compiler. During our project we did not have root access to the UNIX system we were
working on, and therefore we have only tried to install the compiler in our own home directory.

* First, you must obtain a full version of GNU CC, including the source files. The
version number must be 2.7.0, since this is the version our work is based on. The
source code is freely accessible and can be fetched at numeilmiseﬁ[around
the world. In Sweden you can preferably fetch GNU CC at theftptsunet.se
The official site for GNU CC igrep.ai.mit.edu

« All the files obtained from the ftp site are merged (with the UNIX command
"tar ’) and packed (with another GNU progragzip °) into a single file, and
by convention the file’s suffix istar.gz '. For example, if you want to fetch
version 2.7.0 of GNU CC, you should ftp after figc-2.7.0.tar.gz ",
First, you should unpack the file with the commaguahzip ’, and then run the
commandtar -xvf ' to restore all files included in thear ’-file. Prefera-
bly, you place the files in the directorg/§cc-2.7.0 ’ (where the '~’ in the
beginning stands for your home directory).

* In all the source files in which we have altered, accordi®dP®ENDIX B -
'Diff files of the changes in GNU CC sourcgbu must now perform the
changes. The source files are found in the directgget-2.7.0 .

» Go to the directory 'fgcc-2.7.0/config '. Make a new directorythor .
Place all files listed IAPPENDIX A - "Listing of machine dependent fiieghis
directory ('~/gcc-2.7.0/config/thor)

One possibility now is to build the compiler in the same directory as the source code (in our case:
'~/gcec-2.7.0 "), but we thought this approach to be kind of messy, even though this is the eas-
iest way. We wanted the object files to be separated from the source code, and therefore we cre-
ated the directory fgcc-2.7.0/thor " where we built our compiler. One drawback with this
approach is that you must create links to some files, otherwise the building script will not be able
to find them.

* First create a directorythor ' under the directory 'fgcc-2.7.0 .
» Create a directory¢p ' under the directory 'fgcc-2.7.0/thor "

» Go to the newly made directory (gec-2.7.0/thor/cp ") and create the
following links with the commandstn -s ../. /cp/Iang specs.h
and In -s ../../cp/lang-options.h

» Create the directory /thor ’, then go to the directory lgcc-2.7.0/
thor .

Now we can finally start building the compiler. There are essentially three commands to run

1. Ftp means File Transfer Protocol, which essentially means a standardized format for fetching and sending
files. If one’s computer system is connected to internet is usually means that one can fetch files through this
protocol.

Document No: TOR/TNT/0028/SE Date:4 December 1995 Issuel Pag156

which takes care of everything, one command to run the configuring script, which will create the
makefile you are going to use, and two commands to run the makefile.

* Run the command./configure --target=thor --prefix=/
userpath/thor ', where userpath ' is the complete path to your home
directory. This will create a makefile that will install the final compiler under '~
thor . If the prefix option is omitted, it will be installed undéusr/local ’

* Run the commandnake LANGUAGES=t After you give this command you
could preferably take a cup of coffee, since this will take a while.

* Run the commandiake LANGUAGES=c install .

Now the building process is completed. If you want to reinstall the compiler you must run the
command make distclean " before you run theconfigure ’ script. The building actions
have now created various files (object-, executable files etc.).

» The object files of the GNU CC'’s source code are to be found in the directory
'~/gcc-2.7.0/thor ",

» The executable file is callethor-gcc ' and is found in the directory /~
thor/bin . It can be seen as a driver program which in turn calls the other exe-
cutable files;¢cl’ and ‘cpp’ (found in the directory '#hor/lib/gcc-
lib/thor/2.7.0). The file 'cpp’ is the preprocessor of the compiler, and in
"ccl’ the bulk of the compilation work is done.

One last thing worth mentioning is that the whole building process according tetlooir * -

file and the Makefile.in " uses the UNIX C compiler ¢c’) together with a debugging flag

(’-g ’). This means that the compiler is built with debugging information in the object files, i.e.
larger files and the execution may be a bit slow. If your system is equipped with a normal installa-
tion of GNU CC you can use that one instead, together with optimization if you wish. Here is the
procedure to accomplish that:

» Editthe t-thor ’-file and add the following linesCC =gcc ' and 'CFLAGS
=-0".

« Alternatively you can add the lines above to thake’ command line explained
above.

When the building process starts you can see that the files are compilegbwi® ' ’ instead of
ICC _g)

