
Data Cache Timing Analysis with Unknown
Data Placement

Thomas Lundqvist

Technical Report 02-11

CHALMERS UNIVERSITY OF TECHNOLOGY
Department of Computer Engineering
Göteborg, February 2002

Data Cache Timing Analysis with Unknown Data Placement

Thomas Lundqvist

Department of Computer Engineering
Chalmers University of Technology

SE–412 96 G̈oteborg, Sweden
thomasl@ce.chalmers.se

Abstract

This paper presents a method to estimate the worst-case
number of data cache misses for a single subroutine where
data objects have an unknown placement in memory. This
is motivated by the need for a worst-case execution time
estimate for parts of a program, e.g., a single library sub-
routine. The first step is to identify all data objects that
are accessed in a predictable manner but have an unknown
placement. Then, a conflict analysis is made and we show
how this analysis can be made arbitrarily accurate. Our
experimental evaluation of two benchmarks and different
cache configurations shows that it is indeed possible to get
tight estimates of the worst-case number of misses for a
single subroutine with an acceptable analysis effort.

1 Introduction

A common technique in current processor architectures
is to improve the average memory access time by using
cache memories. However, they make it more difficult
to obtain tight estimates of the worst-case execution time
(WCET) of programs. This estimate is often needed in
real-time systems in order to guarantee timing require-
ments. Ideally, we want tight estimates of the WCET
without sacrificing the average performance. For exam-
ple, we do not want to turn off the caches.

In this paper, we study the problem of data cache anal-
ysis in the context of estimating the WCET for a single
subroutine. This is useful when WCET analysis is needed
before a program is fully written. For example, the sub-

routine could be a library function that will be used by
several other programs. Furthermore, the analysis of a
single subroutine can also be useful to reduce the com-
plexity when analyzing a complete program.

When considering a single subroutine it is a common
case that the target address of memory accesses will be
unknown due to its dependency on unknown input. Typ-
ically, the initial stack pointer and input parameters like
pointers to data objects in memory will be unknown. This
could easily make all memory accesses unknown, leading
to over-estimation of the WCET.

In Sections 3 and 4, we present an extension to a previ-
ously published WCET analysis method [7, 8] that makes
it possible to reduce the over-estimation of the WCET
due to the unknown memory accesses. The method an-
alyzes the interaction of different memory accesses, such
as global data accesses, interacting and conflicting with
stack accesses. It exploits the fact that although the base
address used for a sequence of accesses may depend on
unknown input data, the offsets relative to this base ad-
dress may be known, making it possible to better predict
the cache behavior.

Our experimental results, which can be found in Sec-
tion 5, show that the method in many cases finds tight es-
timates of the worst-case number of data cache misses.
Also, the time complexity of the analysis is found to
be reasonably low. The results show that the use of a
traditional data cache can in many cases lead to a pre-
dictable estimate of the WCET even when analyzing a
single subroutine. We relate our method to work by oth-
ers [2, 4, 6, 10, 11] in Section 6.

1

matmult(matrix A, B, R)
{

int x, y, z;

for (x = 0; x < 10; x++)
for (y = 0; y < 10; y++) {

R[x][y] = 0;
for (z = 0; z < 10; z++)

R[x][y] += A[x][z] * B[z][y];
}

}

Figure 1: Matrix multiplication subroutine

2 The Problem

To better understand the problem with conflicting ac-
cesses in a data cache, we will start by looking at a small
example. In the example and in the rest of this paper we
will use the following system model.

For the purpose of this paper, we focus only on the
effect of a data cache on the execution time. We treat
all memory reads and writes as equivalent. The data
cache is assumed to be a traditional cache where place-
ment is managed by hardware. The least recently used
block in the set (true LRU) is replaced when a new block
is inserted. Furthermore, it is assumed that one or sev-
eral regions of memory can be marked as being non-
cacheable. To simplify the presentation we require that
all initial pointer values are aligned with the data cache
block boundaries.

Unless otherwise stated, we assume a 2048 bytes,
direct-mapped cache with a block size of 16 bytes.

Let us assume we want to find an upper bound on the
number of data cache misses occurring when the matrix
multiplication subroutine in Figure 1 is run. The upper
bound must take into account that the matrices can be
placed at arbitrary locations in memory and that the value
of the initial stack pointer is unknown. The subroutine
multiplies two 10 x 10 matrices,A andB, and puts the re-
sult in matrixR. Thematrix type is defined as a pointer
to an array of integers. When compiled (without opti-
mization), the local variablesx , y , andz are allocated on
the stack. This means that we will have a mix of accesses
going either to the stack area or to the different matrices
allocated somewhere in memory.

Figure 2 shows the behavior of this subroutine regard-

0 200 400 600 800 1000
Test case

0

200

400

600

800

1000

N
um

be
r

of
 d

at
a

ca
ch

e
m

is
se

s

1000

78

Figure 2: Measured number of cache misses.

ing data cache misses. The number of data cache misses
has been measured for 1000 random placements of data,
and then sorted. The minimum number of data cache
misses occurring is 78. This represents the number of
cold misses and matches approximately the working set
of the subroutine, which is1200/16 = 75 blocks for the
three matrices. Since the cache capacity is higher than
75 blocks we have no capacity misses and the extra cache
misses we see for the majority of all test samples are due
to conflicting mapping of data into the data cache. The
worst observed combination of input pointer values re-
sulted in 1000 cache misses.

This example shows the importance of testing all in-
put values in order to find the worst case. However, an
exhaustive test of all different input pointer values is of-
ten not practical. A pointer to a data object determines in
which cache set the first block of the data object will be
cached. Thus, for block aligned pointers, the number of
different cache mappings is equal to the number of cache
sets,numsets . If a subroutine depends ons unknown
pointers, then the number of combinations to test is:

combinations = numsetss

In the example,numsets = 2048/16 = 128. Thus,
four pointers give us1284 ≈ 268 million combinations
to test. The interesting question is if it is possible to find
the worst case without doing exhaustive testing. As we
will demonstrate in the following sections this is indeed
possible and in Section 5, we find that the actual worst-
case for this subroutine is not 1000 but 1252.

2

3 WCET Analysis Framework

Before we present our new method and how it can esti-
mate the worst-case number of cache misses, we will first
describe the WCET analysis framework used. For a more
complete description, see [7, 8].

The WCET of a program is the maximum possible ex-
ecution time for a given range of unknown input data. A
general approach to estimate the WCET of a program is to
find the worst-case execution time of the longest path in
the program. To find the WCET of a single path, we need
an accurate timing analysis method, and to avoid examin-
ing infeasible (non-executable) paths, we need an accurate
path analysis method.

Our previously presented WCET estimation method [7]
include both path and timing analysis using cycle-level
symbolic execution. An instruction-level simulator, con-
nected to a cycle-accurate timing model, is used to give
an accurate timing analysis. Furthermore, the simulator
has been extended to also handle unknown values. This
makes it possible to distinguish between branch condi-
tions that depend on the input data and branch conditions
that are independent of input data, leading to an explo-
ration of all feasible paths in the program and the auto-
matic elimination of many infeasible paths.

In order to reduce the number of paths to explore, we
also apply a path merging strategy. Typically, if a loop
body containsn feasible paths, the number of paths will
grow with a factor ofn in each iteration. To cope with
this, we merge all paths into one in each iteration before
continuing with the next iteration of the loop. The merg-
ing of two paths means simply that we pick the longest
path and discard the shortest path. To be safe, we add
an extra penalty to the estimated execution time to ac-
count for the possible mistake we are doing. The short
path might actually lead to a longer total execution time
in the future. For example, the content of the caches in the
short path might lead to a greater number of future cache
misses when compared with the long path.

For data cache analysis, the method has been demon-
strated to be quite powerful [8]. When doing a WCET es-
timation, it automatically identifies all accesses that have
an unknown reference address. We refer to these accesses
asunpredictable accesses. These accesses are then con-
nected to the corresponding data structure. Each data
structure that is accessed by an unknown data access is

marked as being anunpredictable data structure. In the
next step, these data structures are allocated to a non-
cacheable area of the memory, and finally, another WCET
estimation can be done to obtain a safe and tight estimate.

In our previous data cache study, data structures with
an unknown storage location were always classified as
unpredictable. In the next section, we will show how to
extend the capability of our method to identify such data
structures as predictable despite the storage location being
unknown.

4 Approach

In this section, we will first explain how to identify data
structures that are predictable but have an unknown place-
ment. This is done in Section 4.1. Second, in Sec-
tions 4.2, 4.3, and 4.4, we will explain how to use this
information in a data cache analysis without resorting to
exhaustive testing of all possible combinations of differ-
ent placements. Finally, in Section 4.5, we will show how
our new data cache analysis handles multiple paths and
how it affects the merge operation.

4.1 Data structure identification

The first step is to identify data structures that are ac-
cessed in a predictable manner but depends on an un-
known base pointer that points to the location in memory
where the data structure is allocated.

When analyzing a single subroutine, like the one in the
example in Figure 1, we first assign unknown values to
all unknown input values at the start of the analysis. Us-
ing our simulator tool we then obtain a memory access
trace for each path in the program, identifying all accesses
going to data structures with unknown placement as un-
known. The data structures we are looking for will be
classified as unpredictable.

Among the unpredictable data structures we then use a
testing approach to identify the ones that can be turned
into predictable ones. Our approach is to assign arbi-
trary values to the input data that corresponds to a base
pointer of a data structure. This is done by simply linking
the subroutine with a small test program that allocates the
data structures to some place in memory and then calls the
subroutine. Then, we run our simulator tool again to see

3

if any data structure previously classified as unpredictable
gets classified as predictable. These data structures are
marked as beingpredictable with an unknown placement.

After the identification is done, all data structures have
been classified as eitherpredictableif the access pattern
is independent of input data,predictable with an unknown
placementif the access pattern is independent of input
but the storage location depends on input data, orunpre-
dictableif the access pattern may depend on input data re-
gardless of the storage location being known or unknown.

Finally, to make a WCET estimation, all predictable
data structures are allocated to some arbitrary memory lo-
cation. To make a correct analysis, the normal data cache
analysis is enhanced with a conflict analysis to take the
unknown placement into account.

4.2 Data cache analysis

After the identification step, the data cache analysis is re-
sponsible for analyzing the memory accesses produced by
the simulator. Whenever a load or store instruction is exe-
cuted, we must determine if it hits or misses in the cache.
The added complexity in this case is that we want to find
out if the access can result in a cache hit regardless of the
placement of data structures.

To be able to analyze the interaction of different mem-
ory accesses we keep a history of all memory accesses that
have occurred. Whenever a new access occurs we add it
to the end of the history list and also do a local analysis to
determine if it hits or misses in the cache. An example of
such a history list can be seen in Table 1. The first column
in the table shows the accesses made by the program ex-
pressed as offsets from the initial stack pointer or pointer
to data structure A. During analysis, fixed values are set to
these pointers (sp = 100000, pA = 3800) and column 2
and 3 in the table shows the content of the list of accesses
used during analysis. In the list, each access is labeled
according to the data structure it targets. The memory ac-
cesses belonging to a certain data structure is defined as
being part of the samememory access sequence.

To decide if an access is a hit or a miss, we first imag-
ine that each access sequence uses its own separate cache.
This makes it possible to identify compulsory misses like
cold misses or misses due to internal conflicts, i.e., con-
flicts with other accesses in the same sequence. If an
access is not identified as a miss in this step, we con-

tinue with an analysis where we take into account pos-
sible conflicts from other sequences. Accesses from other
sequences are then assumed to be interfering in the most
pessimistic manner.

An example of the result of an analysis, for both a
direct-mapped and a 2-way set associative cache, can be
seen in Table 1. For the first 6 accesses, each access can
be classified by only looking at accesses belonging to the
same access sequence. Thus, the analysis is similar to a
traditional cache analysis. However, for accesses 7,8, and
9, each access can miss due to conflicts with accesses be-
longing to other sequences. When analyzing access 7, we
find that this access must be assumed to be a miss since
pA can be set to a value that makes accesses 4,5, and 6
map to the same cache set as access 7. This is true for both
the direct-mapped and the 2-way cache since accesses 4,5,
and 6 will replace two blocks in a cache set. Access 8 is
analyzed in the same manner and must also be assumed to
be a miss. The last access, access 9, is more interesting.
Here, the stack pointer can be set to a value that makes
accesses 7 and 8 map to the same cache set as access 9.
However, the stack accesses can only replace at most one
block in a cache set, so we get a possible conflict miss
for the direct-mapped cache but a guaranteed hit for the
2-way cache.

An interesting detail in the example concerns access 7
and 8. If we study the example carefully, we actually find
that only one of the accesses 7 and 8 will miss. The stack
access cannot replace both accesses simultaneously, only
one of them. In the next sections, we will first present a
basic algorithm that cannot discover this case. Then, we
will show how to extend the basic algorithm in order to
improve the accuracy of the analysis. Using the extended
version of the algorithm we can indeed identify one of the
accesses 7 and 8 as a hit.

4.3 Basic algorithm

The basic algorithm used can be seen in Figure 3. It ana-
lyzes a new accessA with target addressr. First, the list
containing all previous accesses is searched, starting from
the end, to find an access targeting the same sequence and
memory block,memblock , as accessA. If no such access
is found, the access is a cold miss.

If memblock is found at a positionpos, we must ana-
lyze all intermediate memory accesses and see if they can

4

History of accesses Analysis, direct-mapped Analysis, 2-way assoc.
Address Address Sequence Set # Hit/Miss analysis Set # Hit/Miss analysis

1 sp - 109c fef64 stack 118 Miss (cold) 54 Miss (cold)
2 sp - 10a0 fef60 stack 118 Hit, same block as 1 54 Hit
3 sp - 10a4 fef5c stack 117 Miss (cold) 53 Miss (cold)
4 pA + 850 4050 A 5 Miss (cold) 5 Miss (cold)
5 pA + 50 3850 A 5 Miss (cold) 5 Miss (cold)
6 pA + 450 4050 A 5 Miss conflict from 5 5 Hit
7 sp - 10a0 fef60 stack 118 Miss if conflict from 4,5,6 54 Miss if conflict
8 sp - 10a4 fef5c stack 117 Miss if conflict from 4,5,6 53 Miss if conflict
9 pA + 450 4050 A 5 Miss if conflict from 7,8 5 Hit
Initial stack pointer:sp = 100000, initial pointer to data structure A:pA = 3800

Size of data cache: 2048 bytes. Block size: 16 bytes.

Table 1: Example of basic analysis for a direct-mapped and a 2-way cache.

replacememblock . In this step, we sort all intermediately
accessed memory blocks into different sets according to
the sequence and cache set they map to. This sorting can
be seen as a kind of backwards cache simulation where
each sequence is stored in a separate cache. Starting with
the last access, the number of the accessed memory block
is put into a setblocks(q, i), whereq is the sequence that
the access belongs to andi is the cache set it maps to. This
is done for all accesses untilpos is reached.

To see if memblock can be replaced, the algo-
rithm calculates the maximum possible age,agemax, of
memblock . The age of a block is used by the least-
recently used replacement scheme in order to replace
the oldest block when a new block needs to be inserted.
If agemax is greater than the associativity of the cache
thenmemblock may have been replaced. The maximum
age is found by counting the number of unique inter-
mediate accesses mapping to the same cache set as ac-
cessA. For accesses belonging to the same sequence
asA, this is easily found as the number of elements in
blocks(seq , cacheset), whereseq andcacheset are the se-
quence thatA belongs to and the cache set thatA maps to,
respectively. For other sequences, any cache set can inter-
fere. Therefore, for each other sequence, the maximum
number of elements found in any cache set is picked. Fi-
nally, if agemax > assoc, accessA is a possible miss,
otherwise it is a guaranteed hit.

4.4 Improving accuracy

When the basic algorithm analyzes each access of a se-
quenceseq, it uses the pessimistic simplification that each
sequence other thanseq causes the maximum possible in-
terference. However, by doing this analysis locally for
each access the algorithm derives quite a pessimistic view
of the conditions necessary for conflicts to occur.

Ideally, we want to calculate the maximum number of
misses among all accesses that can occur considering all
possible placements of data structures (an exhaustive al-
gorithm). To express this more formally we first need
some definitions. The placement of a data structure is de-
termined by its corresponding initial pointer value. How-
ever, the cache behavior is only dependent on where the
data is mapped in the cache memory. Therefore, to con-
sider all placements of data we need only consider all off-
sets,oi, of a sequencei in the cache. Since all pointers
are assumed to be aligned with data cache block bound-
aries, the offset can be defined as the index of the cache
set to which the initial pointer maps, i.e.,oi ∈ S where
S = [0,numsets−1] andnumsets is the number of cache
sets. Leto = (o1, o2, . . . , os−1) ∈ Ss be a vector of di-
mensions containing the offsets for all sequences where
s is the number of sequences. The setS = Ss contains all
possible combinations of placement for all data structures.
We can now express the maximum number of misses in
the ideal case as:

5

r is the target address of the memory accessA.
seq is the sequence that the access belongs to.
blocksize is the cache block size.
assoc is the cache associativity.
size is the cache size.
numsets = size/blocksize/assoc is the
number of cache sets.
|set | = the number of elements in setset .

function Analyze(A)
memblock = r/blocksize
pos = ListSearchBackwards(memblock , seq)
if memblock not foundthen

MISS (cold)
else

blocks = SortAccesses(pos)
cacheset = (r/blocksize) mod numsets
agemax = 1
agemax = agemax + |blocks(seq, cacheset)|
for all sequencesq 6= seq do

agemax = agemax + max0≤i<numsets |blocks(q, i)|
end for
if agemax > assoc then

MISS (possible conflict)
else

HIT (guaranteed)
end if

end if
end function

function SortAccesses(pos)
return blocks where

blocks(q, i) = set containing all different memory
blocks from end of history list to positionpos ,
of sequenceq mapping to cache seti.

end function

Figure 3: Hit/Miss analysis algorithm

ideal = max
o∈S


 ∑

0≤A<na

miss(A,o)




The sum is made over all accessesA in the program
(along a single path, in Section 4.5 we show how multiple
paths are handled) andna is the total number of accesses.
The value of the functionmiss(A,o) is 1 if accessA may
miss when data structures are placed according to offsets
o, otherwise the value is 0. This means that for each com-
bination of placements we do a traditional cache analysis
of all accesses and pick the combination that gives the
maximum number of misses.

The basic algorithm, described in the previous section,
go through all accesses and does a local analysis for each
access. The local analysis includes the examination of all
possible data structure placement offsets. It calculates:

basic =
∑

0≤A<na

{
1 if Analyze(A) = MISS
0 otherwise

=
∑

0≤A<na

(
max
o∈S

miss(A,o)
)

The difference is that themax function has been moved
inside the summation, making the analysis more pes-
simistic. Our approach to get improved accuracy is to do
something in between the ideal and the basic algorithm.
By splitting the basic analysis into different cases, we can
do an exhaustive test of all cases and for each case do a
basic analysis using a restricted set of offsets.

Let K be the number of cases to restrict each offset to.
Then, for a given caseci ∈ C, whereC = [0, K − 1], we
restrict offsetoi to:

oi = Khi + ci

where: hi ∈ H, andH = [0,numsets/K − 1]. For
example, ifK = 2 we restrict the offsets to even or odd
values when settingci = 0 or ci = 1, respectively. The
number of cache sets,numsets , must be a multiple ofK.
Thus,K is typically a power of 2.

We can now formulate an expression for the estimated
maximum number of misses that the improved algo-
rithm calculates. First, we introduce the vector nota-
tions: c = (c0, c1, . . . , cs−1) ∈ C = Cs, and h =

6

Possible cache set mappings for restricted offsets
History of accesses cstack = 0 cstack = 0 cstack = 1 cstack = 1

Address Sequence Set #cA = 0 cA = 1 cA = 0 cA = 1
6 4050 A 5 1, 3, 5, . . . 0, 2, 4, . . . 1, 3, 5, . . . 0, 2, 4, . . .
7 fef60 stack 118 0, 2, 4, . . .h 0, 2, 4, . . .m 1, 3, 5, . . .m 1, 3, 5, . . .h
8 fef5c stack 117 1, 3, 5, . . .m 1, 3, 5, . . .h 0, 2, 4, . . .h 0, 2, 4, . . .m
m= possible cache miss,h= cache hit.

Table 2: Example of improved analysis (K = 2) for a direct-mapped cache.

(h0, h1, . . . , hs−1) ∈ H = Hs. Then, the result from
the improved algorithm can be expressed as:

improved = max
c∈C

∑
0≤A<na

(
max
h∈H

miss(A,o)
)

o = Kh + c

Thus, for a given casec we do a basic analysis but
only include conflicts from other accesses if they occur
for the restricted set of offsets. By settingK = 1 or
K = numsets the improved algorithm reduces to the ba-
sic or ideal algorithm, respectively.

In our implementation, we analyze all cases simulta-
neously by keeping a table,miss table(c), that holds the
possible number of misses discovered so far in the analy-
sis for each casec. Then, in the end, the result is obtained
from:

improved = max
c∈C

(miss table(c))

To better understand how the improved algorithm
works, we will again study the example in Table 1 and
see how accesses 7 and 8 is classified by the improved
algorithm. The result from an improved analysis for a
direct-mapped cache can be seen in Table 2. Each offset
is split into 2 cases (K = 2) for a total of 4 cases since
we have 2 sequences. Each case is given by the variables
cstack, cA ∈ [0, 1]. As an example, forcstack = 0 and
cA = 1 we restrict the offsets to:

ostack = 2hstack + 0

oA = 2hA + 1

Even offsets for the stack pointer means that access 7
maps to even cache sets and access 8 to odd cache sets.
Odd offsets for the pointer to data structure A means that
access 6 maps to even cache sets. If access 6 may map to
the same cache set as accesses 7 or 8 we may get a con-
flict miss. Thus, when the possible cache set mappings
overlap we may get conflict misses. The improved analy-
sis manages, in this case, to find the fact that only one of
the accesses 7 and 8 can miss due to conflicts with access
6 and we get at most one miss for these accesses for each
case.

4.5 Path analysis and merging

Up until now, we have only dealt with the problem of an-
alyzing memory accesses from a single path in the pro-
gram. To extend the analysis to multiple paths we must
define what happens when paths are split into two and
how to handle the merge operation (see Section 3 for a
description of our WCET analysis framework).

To handle multiple paths, we make each path contain its
own private timing model. This means that each path will
have a list of accesses and a table of the number of possi-
ble misses,miss table, unique to that path. When a path
is split into two, the list and the table must be duplicated.

When merging two paths, we only keep the list and the
table that belongs to the path that we believe will be the
longest one. To compensate for the possible mistake we
are doing we must compare the two paths and find out if
the short path possibly can cause a longer execution time
in the future (see [7] for further discussion on this issue).
We call this possible execution time difference theworst
case execution time penalty, WCETp. If WCETp > 0
we must addWCETp additional data cache misses to the

7

final WCET in order to guarantee a safe estimation.
The penaltyWCETp is found by comparing the list of

accesses and the table of misses between the two paths,ps

andpl, that are being merged.ps andpl is the short path
and the long path respectively. TheWCETp is given by:

WCETp(ps, pl) =
WCETp(lists, listl) +
+ WCETp(miss tables,miss table l)

The definition of WCETp for the table of misses
shown above is simply the maximum difference found
between the short and the long path for any case (entry)
in the table. For example, assume that for one case the
number of possible misses inmiss tables is greater than
the the number of possible misses for the same case in
miss table l. At the end of the analysis, this case may
prove to be the maximum one and thus represents the final
WCET. This means that the final WCET could get under-
estimated if we do not add the penalty. Thus, we get:

WCETp(miss tables,miss table l) =
max

c0,c1,...,cs−1
(miss tables(c0, c1, . . .)

− miss table l(c0, c1, . . .))

The penaltyWCETp(lists, listl) for the list of ac-
cesses is calculated by the algorithm in Figure 4. In prin-
ciple, one cache miss penalty must be added toWCETp

for each possible access in the future that would be clas-
sified as a hit according tolistl and a miss according to
lists. However, to accurately determine this difference
betweenlistl andlists is very complex and the algorithm
is based on a more simple assumption. To begin with,
it is assumed that all accesses inlistl are unique to the
long path and do not exist inlists. Then,WCETp will
simply be the number of accesses inlistl. This is, how-
ever, overly pessimistic. To get a useful algorithm, some
additional operations are used. First, each access list is
cleaned by removing all accesses that refer to a memory
block that is later in the list referred to (superseded ac-
cesses). It is only the last access that occurred to a mem-
ory block that is used when determining hit or misses.

lists = list of accesses in short path.
listl = list of accesses in long path.
list(last) = the last access in list
accesss = accessl ⇒ accesses refer to same memory block
and belongs to same sequence.

function WCETp(lists, listl)
remove superseded accesses inlistl andlists

while lists(last) = listl(last)
remove last element in both lists

end while

return number of accesses left inlistl

end function

Figure 4:WCETp algorithm for access lists

Second, if the last element (or elements) in both lists are
identical, i.e., they refer to the same memory block and
belong to the same sequence, then they can be removed
since these accesses can never cause a difference in the
future.

It is worth noting that the algorithm presented in Fig-
ure 4 is quite pessimistic. In the next section, we evaluate
this pessimism experimentally.

5 Experimental results

To evaluate the accuracy and time complexity of the pre-
sented algorithms, we have implemented the improved
conflict analysis and the merging algorithm into our
WCET analysis tool [7]. Then, memory accesses from
two different subroutines,matmult and compress, have
been analyzed.

5.1 Experimental setup

The WCET tool used is based on the PowerPC architec-
ture. In this evaluation, the pipeline and instruction cache
analysis were turned off. The data cache was set to 2048
bytes and the block size to 16 bytes. All pointers to ob-
jects are kept aligned with cache block boundaries.

8

matmult compress
Multiplies two Compresses 50
10x10 matrices bytes of data

Identified sequences 4 3
Multiple paths no yes
Path merges 0 3965
Executed instructions 47994 46170
Data accesses made 8207 8005

Table 3: Benchmark properties.

The improved algorithm described in Section 4.4 has
been implemented. However, an extra optimization has
been added. By exploiting symmetry, it is possible to set
the offset of one sequence to a fixed value and remove
this sequence from the case variables. So if each offset
of a sequence gets split intoK cases, the total number of
cases to examine will beKs−1 wheres is the number of
sequences.

The GNU compiler (gcc 2.7.2.2) and linker has been
used to compile and link the benchmarks. No optimiza-
tion was enabled. The simulated run-time environment
contains no operating system; consequently, we disabled
all calls to system functions like disk I/O and theprintf

function in the benchmarks.
Table 3 shows some properties of the benchmarks used.

Forcompress, the instruction count and data access count
is along the worst-case path found.

5.2 Data structure identification

The subroutinematmulthas three incoming parameters
being pointers to the three matricesR, A, andB, where
R is the result matrix, andA andB are the source matri-
ces for the multiplication. These matrices were identified
as predictable data structures but with an unknown place-
ment (see Section 4.1). Also, the stack area is treated as a
predictable data structure but with an unknown placement
since the initial stack pointer is considered to be unknown
input data. In total, we identified 4 different memory ac-
cess sequences.

In compress, the incoming parameters are pointers to
the source and destination text buffers. The source text
buffer was identified as predictable but with an unknown
placement. However, the destination buffer was identified
as unpredictable. This buffer must therefore be allocated

to a non-cacheable memory area. Furthermore,compress
was found to access the stack area as well as many global
variables. Again, the stack area is treated as a predictable
data structure with an unknown placement. The global
accesses target both predictable and unpredictable data
structures. The unpredictable structures were allocated
to a non-cacheable memory area, while the predictable
data structures were assumed to have an unknown place-
ment since they could get allocated to a different place if
the program is relinked. Also, the global variables were
treated as one compound object, i.e., the linker is assumed
to allocate these variables in the same order regardless
of the final placement. In total, we identified 3 different
memory access sequences targeting the source text buffer,
the stack area, and the global variables.

5.3 Metrics

The worst-case number of data cache misses has been
estimated for different data cache associativity (direct-
mapped, 2-way, and 4-way), and using different num-
ber of cases (see Section 4.4), splitting each offset of
a sequence intoK = 1 case (basic analysis) orK =
2, 4, 8, 16, or 32 cases, giving a total number of cases of
Ks−1 wheres = 4 for matmult and s = 3 for com-
press. The observed WCET has been included as a ref-
erence value. Ideally, we would have liked to include the
actual WCET but this requires an exhaustive analysis that
was too expensive to perform. Instead, we used guided
testing to find the WCET. This was done by doing a tradi-
tional cache analysis for each tested case of initial pointer
values. By using the result from the most accurate con-
flict analysis, we could speed up the testing by focusing
on promising ranges of input values.

As a comparison, two more traditional data cache anal-
ysis methods have been used,cache nothingandcache a
single sequence. Thecache nothingmethod is simply to
assume that all data accesses cause a cache miss or to turn
off data caching. Thecache a single sequencemethod is
to only let one sequence be cached. Then, we have used
a traditional data cache analysis using an arbitrary place-
ment of the target data structure.

9

Matmult Compress
Total Cache Merge Accesses Total

misses Ratio misses Ratio penalty not cached misses
Direct-mapped K=1 4204 3.36 3311 1.16 7 3001 6319

K=2 3828 3.06 3260 1.14 30 3001 6291
K=4 2963 2.37 3143 1.10 45 3001 6189
K=8 2143 1.71 2861 1.00 85 3001 5947
K=16 1567 1.25 2859 1.00 86 3001 5946
K=32 1252 1.00 2859 1.00 86 3001 5946

Observed worst 1252 2852 0 3001 5853

2-way set assoc. K=1 4029 10.38 563 3.61 54 3001 3618
K=2 2566 6.61 325 2.08 73 3001 3399
K=4 1299 3.35 189 1.21 86 3001 3276
K=8 730 1.88 156 1.00 86 3001 3243
K=16 480 1.24 156 1.00 86 3001 3243
K=32 389 1.00 156 1.00 86 3001 3243

Observed worst 388 156 0 3001 3157

4-way set assoc. K=1 78 1.00 19 1.00 86 3001 3106
Observed worst 78 19 0 3001 3020

Cache nothing 8207 0 8005 8005
Cache stack only 4103 6 0 5182 5188

Table 4: Conflict analysis results using improved algorithm withK cases.

5.4 Conflict analysis results

Table 4 shows the results from the WCET analysis of
the matmultand thecompresssubroutine. The observed
worst-case tells us that when using the direct-mapped or
the 2-way set associative cache, misses occur due to con-
flicts between accesses in the different sequences. The
4-way associative cache eliminates all conflict misses and
only cold (compulsory) misses are left.

The basic analysis (K = 1) over-estimates the worst
case for both the direct-mapped and the 2-way cache by
a factor ranging from 1.16 (compress, direct-mapped) to
10.38 (matmult, 2-way). However, for the 4-way cache
it finds the exact number of misses. To get tighter es-
timates for the direct-mapped and the 2-way cache, we
need to split the analysis into cases. The algorithm man-
aged to reach within 1 % of the exact worst-case number
of misses when usingK = 32 for matmultandK = 8 for
compress. This is interesting since an exhaustive analy-
sis corresponds toK = 128 for the direct-mapped cache.
Thus, the exact estimate was found with considerable less

effort than what an exhaustive analysis would require.

For compress, the result from the basic analysis is con-
siderably lower for the 2-way cache when compared with
the direct-mapped cache. This is expected since the 2-
way cache, compared to the direct-mapped cache, allows
the maximum age of a block to be higher before it gets
replaced, leading to fewer cache misses. Somewhat sur-
prising, the same is not true formatmult. In matmult,
the basic analysis gives almost the same result for the
direct-mapped and the 2-way cache. The reason for this
can be found by studying the memory access pattern in
matmult. The typical data structure access pattern is:
A, B, R, stack, A, B, R, stack, This means that the
possible maximum age of a previous access to the same
data structure is 4. Thus, formatmult, the associativity of
the cache must be greater than 3 to avoid counting many
accesses as possible conflict misses.

In both subroutines, stack accesses are the most com-
mon type of access and have therefore been chosen as
the access type to cache for thecache single sequence
method. The results from this method reveals an inter-

10

Matmult Compress
Total # Analysis Total # Analysis

K cases time [sec] cases time [sec]
1 1 1 1 15
2 8 1 4 15
4 64 2 16 15
8 512 4 64 16

16 4096 25 256 20
32 32768 191 1024 37

Traditional 0.6 3.5

Table 5: WCET analysis times

esting fact. Forcompressand the direct-mapped cache,
it is better to only cache stack accesses than to cache all
sequences. By caching only stack accesses, the number
of conflict misses is reduced more than the increase of the
number of misses from the data that is not cached. Fur-
thermore, formatmultand the direct-mapped cache, the
cache stackmethod performs better than the basic analy-
sis does, showing the need to split the analysis into cases.

5.5 Merge penalty

Table 4 also shows that forcompress, a merge penalty was
needed to guarantee a safe estimate of the total worst-case
number of misses. This means that differences in the list
of accesses or themiss table (see Section 4.5) was large
enough to cause a penalty to be added. In our case, the
difference is mainly due to the list of accesses and the
use of the algorithm in Figure 4. This algorithm is quite
simple and pessimistic. Nevertheless, the accuracy of the
algorithm is quite sufficient for our study, since the added
penalties are quite small.

Another contribution to the penalty is our use of a rather
simple timing model. In our study, the execution time
of a path is defined as being the number of data cache
misses. If we would make the timing model more accu-
rate and add the instruction execution times, the penalty
would probably be reduced or eliminated since the execu-
tion time differences between paths to be merged would
increase and this would in turn reduce the penalty needed.

5.6 Time complexity

An important question is how many cases the analysis can
be split into without requiring too much analysis effort.
The answer can be found in Table 5 which shows the anal-
ysis times for different number of cases and for the two
benchmarks. The table also includes the times for doing a
traditional data cache analysis (no conflict).

Compared to a traditional analysis, the analysis time
needed for a basic conflict analysis (K = 1) is a factor
of 2 and 4 formatmultandcompress, respectively. When
splitting the analysis into cases, the extra analysis time
needed is proportional to the number of total cases. As
can be seen in the table, for small number of cases the
extra analysis time is not noticeable. Therefore, a small
number of total cases (for example 64) can always be used
without slowing down the algorithm noticeably. Thus, for
compress, the worst case is found with hardly no extra
time needed. This is not true formatmultwhere we must
spend a lot of time if we really want to find the worst case.

6 Related Work

Previously published data cache analysis methods [2, 4, 6,
8, 10, 11] cannot analyze the interaction between different
sequences of memory accesses. However, it is interesting
to see to what extent they still can be used.

Previous methods are only able to handle a single ac-
cess sequence. In order to handle multiple sequences, the
problem must first be reduced in some way. There are sev-
eral alternatives available and we have already used two
methods in Section 5, thecache nothingand thecache a
single sequencemethods, that are both applicable. These
two methods reduce the problem into analyzing at most a
single sequence, which can be handled by all previously
presented data cache analysis methods.

If the memory system lacks the possibility of not
caching some parts of the memory, we will be forced
to cache all data. In this case, the worst-case estimates
will always become worse. We must count accesses to
non-cached data as misses and if this data also becomes
cached we must account for the possible additional con-
flict misses that may occur.

In this study, we have assumed a traditional cache ar-
chitecture. However, there are several other cache archi-

11

tectures that could make the problem easier or maybe re-
move the need for any detailed conflict analysis. For ex-
ample, hardware cache partitioning [5] could maybe be
used to avoid conflicts by caching each data structure into
a separate partition. Another way to avoid conflicts is to
use a cache where the placement of data is software man-
aged [3]. However, these methods introduce the need to
manage the partitions or placement of data. Traditional
caches may be easier to use.

Even with traditional data caches it is possible to ap-
ply different techniques to avoid conflict misses. For ex-
ample, software cache partitioning [9] or other conflict
avoidance techniques [1] could be used. However, these
techniques often require that a complete program is an-
alyzed and produces a fixed placement of data. The al-
gorithm presented in this paper focuses only on a single
subroutine. It is not clear how the different techniques can
be combined.

7 Conclusions

A new method has been presented to estimate the worst-
case number of data cache misses for a single subrou-
tine. In the paper, we present first a basic algorithm and
then an improved version that splits the analysis into dif-
ferent cases. An experimental evaluation has been per-
formed using two different benchmark subroutines and
using different data cache associativity. When no con-
flict misses occurred (4-way associative cache), the ac-
tual worst-case was found using the fast basic algorithm.
On the other hand, when conflict misses occurred (direct
mapped and 2-way associative cache) the improved algo-
rithm was needed to reach the actual worst-case number
of misses.

Acknowledgments

Professor Per Stenström has contributed with valuable
comments on earlier versions of this paper. This research
is supported by a grant from Swedish Research Council
on Engineering Science under contract number 221-96-
214.

References
[1] B. Calder, C. Krintz, S. John, and T. Austin. Cache-

conscious data placement. InProceeding of the Eigth In-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS
VIII) , pages 139–149, October 1998.

[2] C. Ferdinand and R. Wilhelm. On predicting data cache
behavior for real-time systems. InProceedings of ACM
SIGPLAN Workshop on Languages, Compilers, and Tools
for Embedded Systems, pages 16–30, June 1998.

[3] B. Jacob. Hardware/software architectures for real-time
caching. Presented at CASES’99: Workshop on Compiler
and Architecture Support for Embedded Systems, Wash-
ington DC, October 1999.

[4] S.-K. Kim, S. L. Min, and R. Ha. Efficient worst case
timing analysis of data caching. InProceedings of the 2nd
IEEE Real-Time Technology and Applications Symposium,
pages 230–240, June 1996.

[5] D. B. Kirk. SMART (strategic memory allocation for
real-time) cache design. InProceedings of the 10th IEEE
Real-Time Systems Symposium, pages 229–237, December
1989.

[6] Y.-T. S. Li, S. Malik, and A. Wolfe. Cache modeling
for real-time software: Beyond direct mapped instruction
caches. InProceedings of the 17th IEEE Real-Time Sys-
tems Symposium, pages 254–263, December 1996.

[7] T. Lundqvist and P. Stenström. An integrated path and
timing analysis method based on cycle-level symbolic ex-
ecution. Real-Time Systems, 17(2/3):183–207, November
1999.

[8] T. Lundqvist and P. Stenström. A method to improve the
estimated worst-case performance of data caching. InPro-
ceedings of the 6th International Conference on Real-Time
Computing Systems and Applications (RTCSA’99), pages
255–262, December 1999.

[9] F. Mueller. Compiler support for software-based cache
partitioning. InACM SIGPLAN Workshop on Language,
Compiler, and Tool Support for Real-Time Systems, pages
137–145, June 1995.

[10] R. T. White, F. Mueller, C. A. Healy, D. B. Whalley,
and M. G. Harmon. Timing analysis for data caches and
set-associative caches. InProceedings of the 3nd IEEE
Real-Time Technology and Applications Symposium, pages
192–202, June 1997.

[11] F. Wolf and R. Ernst. Data flow based cache prediction
using local simulation. InProceedings of the IEEE High
Level Design Validation and Test Workshop, pages 155–
160, November 2000.

12

