CHALMERS

Data Cache Timing Analysis with Unknown
Data Placement

Thomas Lundgvist

Technical Report 02-11

CHALMERS UNIVERSITY OF TECHNOLOGY
Department of Computer Engineering
Goteborg, February 2002

Data Cache Timing Analysis with Unknown Data Placement
Thomas Lundqvist

Department of Computer Engineering
Chalmers University of Technology
SE-412 96 @teborg, Sweden
thomasl@ce.chalmers.se

Abstract routine could be a library function that will be used by

several other programs. Furthermore, the analysis of a
This paper presents a method to estimate the worst-cgisgjle subroutine can also be useful to reduce the com-
number of data cache misses for a single subroutine whekexity when analyzing a complete program.

data objects have an unknown placement in memory. Thi§ynen considering a single subroutine it is a common
is motivated by the need for a worst-

placement. Then, a conflict analysis is made and we shoyy | easily make all memory accesses unknown, leading
how this analysis can be made arbitrarily accurate. Qrg,er-estimation of the WCET.

experimental evaluation of two benchmarks and different

cache configurations shows that it is indeed possible to get? S€ctions 3 and 4, we present an extension to a previ-
tight estimates of the worst-case number of misses foP %Sl Published WCET analysis method [7, 8] that makes

single subroutine with an acceptable analysis effort. it possible to reduce the over-estimation of the WCET
due to the unknown memory accesses. The method an-

alyzes the interaction of different memory accesses, such
1 Introduction as global data accesses, interacting and conflicting with

stack accesses. It exploits the fact that although the base
A common technique in current processor architectur@ddress used for a sequence of accesses may depend on
is to improve the average memory access time by usM@known input data, the offsets relative to this base ad-
cache memories. However, they make it more difficulf€ss may be kn.own, making it possible to better predict
to obtain tight estimates of the worst-case execution tif{te cache behavior.
(WCET) of programs. This estimate is often needed inOur experimental results, which can be found in Sec-
real-time systems in order to guarantee timing requingen 5, show that the method in many cases finds tight es-
ments. Ideally, we want tight estimates of the WCEflmates of the worst-case number of data cache misses.
without sacrificing the average performance. For exawilso, the time complexity of the analysis is found to
ple, we do not want to turn off the caches. be reasonably low. The results show that the use of a

In this paper, we study the problem of data cache anahditional data cache can in many cases lead to a pre-

ysis in the context of estimating the WCET for a singldictable estimate of the WCET even when analyzing a
subroutine. This is useful when WCET analysis is needsithgle subroutine. We relate our method to work by oth-
before a program is fully written. For example, the sulers [2, 4, 6, 10, 11] in Section 6.

matmult(matrix A, B, R) 1000

{ .
int x, y, z; i
for (x = 0; x < 10; x++)
for (y = 0; y < 10; y++) {
RIX]ly] = 0;
for (z = 0; z < 10; z++)
RIXIly] += Alx][z] * B[z][yl;

600

400

Number of data cache misses

Figure 1: Matrix multiplication subroutine o 200 a0 e 80 1000

2 The Problem Figure 2: Measured number of cache misses.

To better understand the problem with conflicting a(':;r;‘ﬁ data cache misses. The number of data cache misses

cesses in a data cache, we will start by looking at a SME8s been measured for 1000 random placements of data,

e>_<amp|e. In the e_xample and in the rest of this paper 4Rd then sorted. The minimum number of data cache
will use the following system model.

For th £ thi f | tmisses occurring is 78. This represents the number of
or the purpose ot this paper, we Tocus only on Q%Id misses and matches approximately the working set

effect of a data cache on the execution time. We treoé}tthe subroutine, which i$200/16 — 75 blocks for the

all memory reads and writes as equivalent. - The dzﬂ‘ﬁ‘ee matrices. Since the cache capacity is higher than

cachte. IS assumedd go Ee : trad|t|o_Prr:1I (I:achte wherﬁ plafg'blocks we have no capacity misses and the extra cache
ment IS managed by hardware. € least recently U gses we see for the majority of all test samples are due

block in the set (true LRU) is replaced when a new blo‘fo conflicting mapping of data into the data cache. The

is i . it is assumed that one or sev- L . .
s inserted. Furthermore, worst observed combination of input pointer values re-

eralhregkllonsTof merr;_oryth(;an rgzenmt:{'lf)end a(;srl;em?e rj{ga'lted in 1000 cache misses.
cacheable. To simplify P lon we requl his example shows the importance of testing all in-

all initial point(_er values are aligned with the data Cadb%t values in order to find the worst case. However, an
block boundarles._ exhaustive test of all different input pointer values is of-
_Unless otherwise St‘.“ed' We assume a 2048 by Tt not practical. A pointer to a data object determines in
direct-mapped cache with a blgck size of 16 bytes. hich cache set the first block of the data object will be
Let us assume we want to find an upper bound on fgneq Thys, for block aligned pointers, the number of
number of data cache misses occurring when the mallige ont cache mappings is equal to the number of cache
multiplication subr_outlne in Figure 1 is run. The UPP&Lats numsets. If a subroutine depends onunknown
bound must take into account that the matrices can b&niors then the number of combinations to test is:
placed at arbitrary locations in memory and that the value
of the initial stack pointer is unknown. The subroutine
multiplies two 10 x 10 matrices{ andB, and puts the re-
sultin matrixR. Thematrix type is defined as a pointer In the examplenumsets = 2048/16 = 128. Thus,
to an array of integers. When compiled (without optfeur pointers give ug28* ~ 268 million combinations
mization), the local variables, y, andz are allocated on to test. The interesting question is if it is possible to find
the stack. This means that we will have a mix of accesshe worst case without doing exhaustive testing. As we
going either to the stack area or to the different matricedll demonstrate in the following sections this is indeed
allocated somewhere in memory. possible and in Section 5, we find that the actual worst-
Figure 2 shows the behavior of this subroutine regarchse for this subroutine is not 1000 but 1252.

combinations = numsets®

3 WCET Analysis Framework marked as being annpredictable data structureln the

next step, these data structures are allocated to a non-
Before we present our new method and how it can estiacheable area of the memory, and finally, another WCET
mate the worst-case number of cache misses, we will figgtimation can be done to obtain a safe and tight estimate.
describe the WCET analysis framework used. For a morein our previous data cache study, data structures with
complete description, see [7, 8]. an unknown storage location were always classified as

The WCET of a program is the maximum possible exmpredictable. In the next section, we will show how to
ecution time for a given range of unknown input data. Axtend the capability of our method to identify such data
general approach to estimate the WCET of a program issteuctures as predictable despite the storage location being
find the worst-case execution time of the longest path iinknown.
the program. To find the WCET of a single path, we need
an accurate timing analysis method, and to avoid examin-
ing infeasible (non-executable) paths, we need an accuédte Approach
path analysis method.

Our previously presented WCET estimation method [1) this section, we will first explain how to identify data
include both path and timing analysis using cycle-levelructures that are predictable but have an unknown place-
symbolic execution. An instruction-level simulator, connent. This is done in Section 4.1. Second, in Sec-
nected to a cycle-accurate timing model, is used to gitiens 4.2, 4.3, and 4.4, we will explain how to use this
an accurate timing analysis. Furthermore, the simulatoformation in a data cache analysis without resorting to
has been extended to also handle unknown values. Té#gaustive testing of all possible combinations of differ-
makes it possible to distinguish between branch conéht placements. Finally, in Section 4.5, we will show how
tions that depend on the input data and branch conditieng new data cache analysis handles multiple paths and
that are independent of input data, leading to an explwew it affects the merge operation.
ration of all feasible paths in the program and the auto-
matic elimination of many infeasible paths. 4.1 Data structure identification

In order to reduce the number of paths to explore, we
also apply a path merging strategy. Typically, if a loophe first step is to identify data structures that are ac-
body containg: feasible paths, the number of paths wikkessed in a predictable manner but depends on an un-
grow with a factor ofn in each iteration. To cope withknown base pointer that points to the location in memory
this, we merge all paths into one in each iteration befondere the data structure is allocated.
continuing with the next iteration of the loop. The merg- When analyzing a single subroutine, like the one in the
ing of two paths means simply that we pick the longeskample in Figure 1, we first assign unknown values to
path and discard the shortest path. To be safe, we adldunknown input values at the start of the analysis. Us-
an extra penalty to the estimated execution time to aesg our simulator tool we then obtain a memory access
count for the possible mistake we are doing. The shardce for each path in the program, identifying all accesses
path might actually lead to a longer total execution tingoing to data structures with unknown placement as un-
in the future. For example, the content of the caches in tkmown. The data structures we are looking for will be
short path might lead to a greater number of future caatiassified as unpredictable.
misses when compared with the long path. Among the unpredictable data structures we then use a

For data cache analysis, the method has been dentesting approach to identify the ones that can be turned
strated to be quite powerful [8]. When doing a WCET e#ito predictable ones. Our approach is to assign arbi-
timation, it automatically identifies all accesses that hatrary values to the input data that corresponds to a base
an unknown reference address. We refer to these accepséster of a data structure. This is done by simply linking
asunpredictable accesse3hese accesses are then cothe subroutine with a small test program that allocates the
nected to the corresponding data structure. Each dd#da structures to some place in memory and then calls the
structure that is accessed by an unknown data accessuisroutine. Then, we run our simulator tool again to see

if any data structure previously classified as unpredictabileue with an analysis where we take into account pos-
gets classified as predictable. These data structuressitoée conflicts from other sequences. Accesses from other
marked as beingredictable with an unknown placementsequences are then assumed to be interfering in the most

After the identification is done, all data structures hayessimistic manner.
been classified as eithpredictableif the access pattern An example of the result of an analysis, for both a
is independent of input datpredictable with an unknowndirect-mapped and a 2-way set associative cache, can be
placementif the access pattern is independent of inpgeen in Table 1. For the first 6 accesses, each access can
but the storage location depends on input dataynmre- be classified by only looking at accesses belonging to the
dictableif the access pattern may depend on input data same access sequence. Thus, the analysis is similar to a
gardless of the storage location being known or unknowraditional cache analysis. However, for accesses 7,8, and

Finally, to make a WCET estimation, all predictabl®, each access can miss due to conflicts with accesses be-
data structures are allocated to some arbitrary memoryllmaging to other sequences. When analyzing access 7, we
cation. To make a correct analysis, the normal data cadimel that this access must be assumed to be a miss since
analysis is enhanced with a conflict analysis to take thg can be set to a value that makes accesses 4,5, and 6
unknown placement into account. map to the same cache setas access 7. This is true for both
the direct-mapped and the 2-way cache since accesses 4,5,
and 6 will replace two blocks in a cache set. Access 8 is
analyzed in the same manner and must also be assumed to
After the identification step, the data cache analysis is & a miss. The last access, access 9, is more interesting.
sponsible for analyzing the memory accesses producedH®re, the stack pointer can be set to a value that makes
the simulator. Whenever a load or store instruction is exaecesses 7 and 8 map to the same cache set as access 9.
cuted, we must determine if it hits or misses in the cachid¢owever, the stack accesses can only replace at most one
The added complexity in this case is that we want to fifdock in a cache set, so we get a possible conflict miss
out if the access can result in a cache hit regardless of tbethe direct-mapped cache but a guaranteed hit for the
placement of data structures. 2-way cache.

To be able to analyze the interaction of different mem- An interesting detail in the example concerns access 7
ory accesses we keep a history of all memory accesses #mat 8. If we study the example carefully, we actually find
have occurred. Whenever a new access occurs we adtat only one of the accesses 7 and 8 will miss. The stack
to the end of the history list and also do a local analysis&ocess cannot replace both accesses simultaneously, only
determine if it hits or misses in the cache. An example ohe of them. In the next sections, we will first present a
such a history list can be seen in Table 1. The first colurbasic algorithm that cannot discover this case. Then, we
in the table shows the accesses made by the programveX-show how to extend the basic algorithm in order to
pressed as offsets from the initial stack pointer or pointenprove the accuracy of the analysis. Using the extended
to data structure A. During analysis, fixed values are setfersion of the algorithm we can indeed identify one of the
these pointerssp = 100000, p4 = 3800) and column 2 accesses 7 and 8 as a hit.
and 3 in the table shows the content of the list of accesses
used during analysis. In the list, each access is Iabeha%
according to the data structure it targets. The memory ac-
cesses belonging to a certain data structure is definedr'ae basic algorithm used can be seen in Figure 3. It ana-
being part of the sammemory access sequence lyzes a new acces4$ with target address. First, the list

To decide if an access is a hit or a miss, we first imagentaining all previous accesses is searched, starting from
ine that each access sequence uses its own separate ctehend, to find an access targeting the same sequence and
This makes it possible to identify compulsory misses likmemory block,memblock, as accesd. If no such access
cold misses or misses due to internal conflicts, i.e., caafound, the access is a cold miss.
flicts with other accesses in the same sequence. If aff memblock is found at a positiomos, we must ana-
access is not identified as a miss in this step, we cdyze all intermediate memory accesses and see if they can

4.2 Data cache analysis

Basic algorithm

History of accesses Analysis, direct-mapped Analysis, 2-way assoc.

Address Address Sequence Set# Hit/Miss analysis Set# Hit/Miss analysis
1 sp-109c fefé4 stack 118 Miss (cold) 54 Miss (cold)
2 sp-10a0 fef60 stack 118 Hit, same block as 1 54 Hit
3 sp-10a4 fefoc stack 117 Miss (cold) 53 Miss (cold)
4 py +850 4050 A 5 Miss (cold) 5 Miss (cold)
5 pa+50 3850 A 5 Miss (cold) 5 Miss (cold)
6 pa+450 4050 A 5 Miss conflict from 5 5 Hit
7 sp-10a0 fef60 stack 118 Miss if conflict from 4,5,6 54 Miss if conflict
8 sp-10a4d fefoc stack 117 Miss if conflict from 4,5,6 53 Missif conflict
9 pu+450 4050 A 5 Miss if conflict from 7,8 5 Hit

Initial stack pointer:sp = 100000, initial pointer to data structure Aia = 3800
Size of data cache: 2048 bytes. Block size: 16 bytes.

Table 1: Example of basic analysis for a direct-mapped and a 2-way cache.

replacememblock. In this step, we sort all intermediately4.4 Improving accuracy
accessed memory blocks into different sets according to

the sequence and cache set they map to. This sorting ¢@fk, the basic algorithm analyzes each access of a se-
be seen as a kind of backwards cache simulation Whe{Rnceseq, it uses the pessimistic simplification that each
each sequence is stored in a separate cache. Starting g‘éﬁhence other thawg causes the maximum possible in-
the last access, the number of the accessed memory blagk e ce. However, by doing this analysis locally for

is put into & seblocks(q, 1), whereq is the sequence thalg, o access the algorithm derives quite a pessimistic view
the access belongs to anis the cache setit maps to. Thigyt the conditions necessary for conflicts to occur.

is done for all accesses unids is reached. _
Ideally, we want to calculate the maximum number of

misses among all accesses that can occur considering all

To see if memblock can be replaced, the algopossible placements of data structures (an exhaustive al-
rithm calculates the maximum possible ageg,,,,., Of gorithm). To express this more formally we first need
memblock. The age of a block is used by the leassome definitions. The placement of a data structure is de-
recently used replacement scheme in order to replaeemined by its corresponding initial pointer value. How-
the oldest block when a new block needs to be inserteder, the cache behavior is only dependent on where the
If age,,.. 1S greater than the associativity of the cachdata is mapped in the cache memory. Therefore, to con-
thenmemblock may have been replaced. The maximusider all placements of data we need only consider all off-
age is found by counting the number of unique intesets,o;, of a sequenceé in the cache. Since all pointers
mediate accesses mapping to the same cache set asr@cassumed to be aligned with data cache block bound-
cessA. For accesses belonging to the same sequeacies, the offset can be defined as the index of the cache
as A, this is easily found as the number of elements get to which the initial pointer maps, i.e; € S where
blocks(seq, cacheset), whereseq andcacheset are the se- S = [0, numsets—1] andnumsets is the number of cache
guence thatl belongs to and the cache set tHainaps to, sets. Leto = (01, 09,...,05s_1) € S° be a vector of di-
respectively. For other sequences, any cache set can integnsions containing the offsets for all sequences where
fere. Therefore, for each other sequence, the maximuns the number of sequences. TheSet S*® contains alll
number of elements found in any cache set is picked. ppssible combinations of placement for all data structures.
nally, if age,,,, > assoc, accessA is a possible miss, We can now express the maximum number of misses in
otherwise it is a guaranteed hit. the ideal case as:

r is the target address of the memory accéss

seq is the sequence that the access belongs to.

blocksize is the cache block size.

assoc is the cache associativity.

size is the cache size.

numsets = size/blocksize [assoc is the
number of cache sets.

|set| = the number of elements in seit.

function Analyze(A)
memblock = r/blocksize
pos = ListSearchBackwards(memblock, seq)
if memblock not foundthen
MISS (cold)
else
blocks = SortAccesses(pos)
cacheset = (r/blocksize) mod numsets
A9Cmaz = 1
AGE e = AGCman 1 |blocks(seq, cacheset)|
for all sequenceg # seq do
age
end for
if age, .. > assoc then
MISS (possible conflict)
else
HIT (guaranteed)
end if
end if
end function

function SortAccesses(pos)
return blocks where

blocks(q,1) = set containing all different memory

blocks from end of history list to positiopps,
of sequence mapping to cache set
end function

Figure 3: Hit/Miss analysis algorithm

maz = 09 ar + MAX0<i<numsets |blocks(q,)]

ideal = max E miss(A, o)
ocS
0<A<n,

The sum is made over all accessésn the program
(along a single path, in Section 4.5 we show how multiple
paths are handled) anq is the total number of accesses.
The value of the functiomiss(A, o) is 1 if accessA may
miss when data structures are placed according to offsets
o, otherwise the value is 0. This means that for each com-
bination of placements we do a traditional cache analysis
of all accesses and pick the combination that gives the
maximum number of misses.

The basic algorithm, described in the previous section,
go through all accesses and does a local analysis for each
access. The local analysis includes the examination of all
possible data structure placement offsets. It calculates:

o 1 if Analyze(A) = MISS
basic = Z {O otherwise
0<A<n,
= Z (max mz’ss(A,o))
o€S
0<A<n,

The difference is that theax function has been moved
inside the summation, making the analysis more pes-
simistic. Our approach to get improved accuracy is to do
something in between the ideal and the basic algorithm.
By splitting the basic analysis into different cases, we can
do an exhaustive test of all cases and for each case do a
basic analysis using a restricted set of offsets.

Let K be the number of cases to restrict each offset to.
Then, for a given caseg € C, whereC' = [0, K — 1], we
restrict offseb; to:

OZ:Khl-l-CZ

where: h;, € H, andH = [0, numsets/K — 1]. For
example, ifK = 2 we restrict the offsets to even or odd
values when setting; = 0 or ¢; = 1, respectively. The
number of cache setsumsets, must be a multiple ofs.
Thus, K is typically a power of 2.

We can now formulate an expression for the estimated
maximum number of misses that the improved algo-
rithm calculates. First, we introduce the vector nota-
tions: ¢ = (co,c1,...,¢5-1) € C = C%, andh =

Possible cache set mappings for restricted offsets

History of accesses Cstack = 0 Cstack = 0 Cstack = 1 Cotack = 1
Address Sequence Set#cs =0 ca=1 cA = ca=1
6 4050 A 5 1,3,5,... 0,2,4,... 1,3,5,... 0,2,4,...
7 fef60 stack 118 0,2,4,.h. 0,2,4,..m 1,3,5,.m 1,3,5..h
8 fef5c stack 117 1,3,5,.m 1,3,5,..h 0,2,4,..h 0,2,4,..m
m= possible cache misk= cache hit.

Table 2: Example of improved analysi& (= 2) for a direct-mapped cache.

(ho,h1,...,hs—1) € H = H*. Then, the result from Even offsets for the stack pointer means that access 7

the improved algorithm can be expressed as: maps to even cache sets and access 8 to odd cache sets.
Odd offsets for the pointer to data structure A means that
access 6 maps to even cache sets. If access 6 may map to

improved = max (max miss(A, o)) the same cache set as accesses 7 or 8 we may get a con-
ceC heH . : . .
0<A<ng flict miss. Thus, when the possible cache set mappings
o = Kh+tc overlap we may get conflict misses. The improved analy-

sis manages, in this case, to find the fact that only one of
the accesses 7 and 8 can miss due to conflicts with access
Thus, for a given case we do a basic analysis but6 and we get at most one miss for these accesses for each

only include conflicts from other accesses if they occGRS€.
for the restricted set of offsets. By settifg = 1 or

K = numsets the improved algorithm reduces to the baé—1 5 Ppath VS d .
sic or ideal algorithm, respectively. : ath analysis and merging

In our implementation, we analyze all cases simultgy, || now, we have only dealt with the problem of an-

neously by keeping a tableyiss_table(c), that holds the /iy memory accesses from a single path in the pro-

possible number of misses discovered so far in the anglya) "1 extend the analysis to multiple paths we must
sis for each case Then, in the end, the result is obtaine

_ efine what happens when paths are split into two and
from: how to handle the merge operation (see Section 3 for a
. _ ' description of our WCET analysis framework).
improved = max(miss_table(c))) o
ceC To handle multiple paths, we make each path contain its
%vn private timing model. This means that each path will

To better understand how the improved algorith : .
works, we will again study the example in Table 1 a ve a list of accesses and a table of the number of possi-
' missesiniss_table, unique to that path. When a path

see how accesses 7 and 8 is classified by the impro o . :
algorithm. The result from an improved analysis for s split into two, the list and the table must be duplicated.

direct-mapped cache can be seen in Table 2. Each offsef/Nén merging two paths, we only keep the list and the

is split into 2 casesK = 2) for a total of 4 cases sincetable that belongs to the path that we believe will be the

we have 2 sequences. Each case is given by the variaf{8gest one. To compensate for the possible mistake we
Cotack,Ca € [0,1]. As an example, forax = 0 and are doing we must compare the two paths and find out if

¢4 = 1 We restrict the offsets to: _the short path possibly can cause a Ion_ger exec_ut?on time
in the future (see [7] for further discussion on this issue).
Ostack = 2Pstack + 0 We call this _possble execution time difference therst
case execution time penalty/ CET,. If WCET, > 0
04 =2ha+1 we must add?V C ET,, additional data cache misses to the

final WCET in order to guarantee a safe estimation. ~ #list, = list of accesses in short path.
The penaltyV’ C ET,, is found by comparing the list of # list: = list of accesses in long path.
accesses and the table of misses between the two path§ 7st(last) = the last access in list
andp;, that are being mergegh, andp, is the short path #accesss = access; = accesses refer to same memory block
’) ! . d bel t .
and the long path respectively. THEC ET), is given by: andbelongs fo same sequence

function WCET,(lists, list;)
WCET,(ps,p1) = remove superseded accesselidn andlist,

WCET,(lists, list;) + while list, (last) = list; (last)
+ WCET),(miss_table,, miss_table;) remove last element in both lists
end while

The definition of WCET, for the table of misses return number of accesses leftifst,
shown above is simply the maximum difference fourghd function
between the short and the long path for any case (entry)
in the table. For example, assume that for one case the
number of possible misses iniss_table, is greater than
the the number of possible misses for the same case in
miss_table;. At the end of the analysis, this case may

prove to be the maximum one and thus represents the figalkong if the last element (or elements) in both lists are
WCET. This means that the final WCET could get und§gentical, i.e., they refer to the same memory block and

estimated if we do not add the penalty. Thus, we get: aj5ng to the same sequence, then they can be removed
since these accesses can never cause a difference in the

Figure 4:W C'ET,, algorithm for access lists

W CET,(miss_tables, miss_table;) = future.
max (miss_table,(co, c1, .. .) It is WOI’Fh notmg tha_t the algorithm prgsented in Fig-
€05C1 -, Cs—1 ure 4 is quite pessimistic. In the next section, we evaluate
— mass_table;(co, c1, . . .)) this pessimism experimentally.

The penaltyW CET,(lists,list;) for the list of ac- 5
cesses is calculated by the algorithm in Figure 4. In prin-

ciple, one cac_he miss penalty must be adde G E T, To evaluate the accuracy and time complexity of the pre-
for each possible access in the future that would be clas-

sified as a hit according thist: and a miss accordin tosented algorithms, we have implemented the improved
. g st . >COraINg 100 flict analysis and the merging algorithm into our
lists. However, to accurately determine this differen

betweerlist; andlist, is very complex and the algorithm CET analysis tool .[7]' Then, memory accesses from
: 5 . . two different subroutinesmatmultand compress have

is based on a more simple assumption. To begin with
o . : een analyzed.

it is assumed that all accesseslint; are unique to the

long path and do not exist ifist;. Then, WCET, will

simply be the number of accessedist;. This is, how- g 1 Experimental setup

ever, overly pessimistic. To get a useful algorithm, some

additional operations are used. First, each access lisTlie WCET tool used is based on the PowerPC architec-
cleaned by removing all accesses that refer to a memauye. In this evaluation, the pipeline and instruction cache

block that is later in the list referred to (superseded amnalysis were turned off. The data cache was set to 2048
cesses). Itis only the last access that occurred to a mdayies and the block size to 16 bytes. All pointers to ob-

ory block that is used when determining hit or missejgcts are kept aligned with cache block boundaries.

Experimental results

matmult compress
Multipliestwo Compresses 50
10x10 matrices bytes of data
Identified sequences 4 3
Multiple paths no yes
Path merges 0 3965
Executed instructions 47994 46170
Data accesses made 8207 8005

Table 3: Benchmark properties.

to a non-cacheable memory area. Furthermooe)press

was found to access the stack area as well as many global
variables. Again, the stack area is treated as a predictable
data structure with an unknown placement. The global
accesses target both predictable and unpredictable data
structures. The unpredictable structures were allocated
to a non-cacheable memory area, while the predictable
data structures were assumed to have an unknown place-
ment since they could get allocated to a different place if

the program is relinked. Also, the global variables were

treated as one compound object, i.e., the linker is assumed

The improved algorithm described in Section 4.4 hgg allocate these variables in the same order regardless
been implemented. However, an extra optimization hgsthe final placement. In total, we identified 3 different

been added. By exploiting symmetry, it is possible to selemory access sequences targeting the source text buffer,
the offset of one sequence to a fixed value and remaug stack area, and the global variables.

this sequence from the case variables. So if each offset
of a sequence gets split inf§ cases, the total number of
cases to examine will b&*~! wheres is the number of
sequences.
The GNU compiler (gcc 2.7.2.2) and linker has beehy 3 Metrics
used to compile and link the benchmarks. No optimiza-

tion was enabled. The simulated run-time environment

contains no operating system: consequently, we disablatf Worst-case number of data cache misses has been
all calls to system functions like disk 1/0 and thentf estimated for different data cache associativity (direct-

function in the benchmarks. mapped, 2-way, and 4-way), and using different num-

Table 3 shows some properties of the benchmarks udf. Of cases (see Section 4.4), splitting each offset of

For compressthe instruction count and data access coufyS€dUeNce intd = 1 case (basic analysis) dt' =
is along the worst-case path found. 2,4,8,16, 0r 32 cases, giving a total number of cases of

K*~1 wheres = 4 for matmultands = 3 for com-
press The observed WCET has been included as a ref-
erence value. Ideally, we would have liked to include the

The subroutinenatmulthas three incoming parametergvcat:at‘lo\évgfzr?:it\:'; regﬁgi};aqfﬁzggﬁxs 3223’3';?:5
being pointers to the three matric&s A, and B, where testing to f'rl?d the WCEQI' This ' as done’b doin agt]rad'—
R is the result matrix, andl and B are the source matri- ingtoh - TISW y doing :

ces for the multiplication. These matrices were identifié'&’nal cache analy3|s for each tested case of initial pointer
vg!ues. By using the result from the most accurate con-

as predictable data structures but with an unknown plauﬁIC analvsis. we could speed up the testing by focusin
ment (see Section 4.1). Also, the stack area is treated as 5 ysIS, P P 9 by 9

predictable data structure but with an unknown placemé)rﬂ promising ranges of input values.
since the initial stack pointer is considered to be unknownAs a comparison, two more traditional data cache anal-
input data. In total, we identified 4 different memory agrsis methods have been usedche nothingandcache a
cess sequences. single sequenceThe cache nothingnethod is simply to

In compressthe incoming parameters are pointers ssume that all data accesses cause a cache miss or to turn
the source and destination text buffers. The source teftdata caching. Theache a single sequenogethod is
buffer was identified as predictable but with an unknowto only let one sequence be cached. Then, we have used
placement. However, the destination buffer was identifiadraditional data cache analysis using an arbitrary place-
as unpredictable. This buffer must therefore be allocateent of the target data structure.

5.2 Data structure identification

Matmult Compress

Total Cache Merge Accesses Total
misses Ratio misses Ratio penalty notcached misses

Direct-mapped K=1 4204 3.36 3311 1.16 7 3001 6319
K=2 3828 3.06 3260 1.14 30 3001 6291

K=4 2963 2.37 3143 1.10 45 3001 6189

K=8 2143 1.71 2861 1.00 85 3001 5947

K=16 1567 1.25 2859 1.00 86 3001 5946

K=32 1252 1.00 2859 1.00 86 3001 5946
Observed worst 1252 2852 0 3001 5853

2-way set assoc. K=1 4029 10.38 563 3.61 54 3001 3618
K=2 2566 6.61 325 2.08 73 3001 3399

K=4 1299 3.35 189 1.21 86 3001 3276

K=8 730 1.88 156 1.00 86 3001 3243

K=16 480 1.24 156 1.00 86 3001 3243

K=32 389 1.00 156 1.00 86 3001 3243

Observed worst 388 156 0 3001 3157

4-way set assoc. K=1 78 1.00 19 1.00 86 3001 3106
Observed worst 78 19 0 3001 3020

Cache nothing 8207 0 8005 8005

Cache stack only 4103 6 0 5182 5188

Table 4: Conflict analysis results using improved algorithm vitlcases.

5.4 Conflict analysis results effort than what an exhaustive analysis would require.

For compressthe result from the basic analysis is con-
Table 4 shows the results from the WCET analysis efderably lower for the 2-way cache when compared with
the matmultand thecompresssubroutine. The observedhe direct-mapped cache. This is expected since the 2-
worst-case tells us that when using the direct-mappedwiy cache, compared to the direct-mapped cache, allows
the 2-way set associative cache, misses occur due to ape-maximum age of a block to be higher before it gets
flicts between accesses in the different sequences. Téyslaced, leading to fewer cache misses. Somewhat sur-
4-way associative cache eliminates all conflict misses anking, the same is not true fonatmult In matmulg
only cold (compulsory) misses are left. the basic analysis gives almost the same result for the

The basic analysisi{ = 1) over-estimates the worstdirect-mapped and the 2-way cache. The reason for this
case for both the direct-mapped and the 2-way cached@p be found by studying the memory access pattern in
a factor ranging from 1.16compressdirect-mapped) to matmult The typical data structure access pattern is:
10.38 matmulf 2-way). However, for the 4-way cached; B, R, stack, A, B, R, stack, This means that the
it finds the exact number of misses. To get tighter gd0ssible maximum age of a previous access to the same
timates for the direct-mapped and the 2-way cache, @ata structure is 4. Thus, fanatmul the associativity of
need to split the analysis into cases. The algorithm mdfie cache must be greater than 3 to avoid counting many
aged to reach within 1 % of the exact worst-case numiRicesses as possible conflict misses.
of misses when using’ = 32 for matmultand K’ = 8 for In both subroutines, stack accesses are the most com-
compress This is interesting since an exhaustive analyaon type of access and have therefore been chosen as
sis corresponds t& = 128 for the direct-mapped cachethe access type to cache for thache single sequence
Thus, the exact estimate was found with considerable lessthod. The results from this method reveals an inter-

10

Matmult Compress 5.6 Time complexity
Total# Analysis Total # Analysis

K cases time[sec] cases time[sec] Animportant question is how many cases the analysis can
1 1 1 1 15 be split into without requiring too much analysis effort.

2 8 1 4 15 The answer can be found in Table 5 which shows the anal-
4 64 2 16 15 ysis times for different number of cases and for the two
8 512 4 64 16 benchmarks. The table also includes the times for doing a

16 4096 25 256 20 traditional data cache analysis (nho conflict).

32 32768 191 1024 37 .\ . ..

Compared to a traditional analysis, the analysis time

Traditional 0.6 3.5

needed for a basic conflict analysi& (= 1) is a factor

of 2 and 4 formatmultandcompressrespectively. When
splitting the analysis into cases, the extra analysis time
needed is proportional to the number of total cases. As
can be seen in the table, for small number of cases the
)] extra analysis time is not noticeable. Therefore, a small
esting fact. Forcompressand the direct-mapped cache,,mper of total cases (for example 64) can always be used
it is better to only cache stack accesses than to cacheaf},out siowing down the algorithm noticeably. Thus, for
sequences. By caching only stack accesses, the numbenyressthe worst case is found with hardly no extra
of conflict misses is reduced more than the increase of {ife needed. This is not true faratmultwhere we must

number of misses from the data that is not cached. Fufang 4 |ot of time if we really want to find the worst case.
thermore, formatmultand the direct-mapped cache, the

cache stacknethod performs better than the basic analy-
sis does, showing the need to split the analysis into caggs- Related Work

Table 5: WCET analysis times

Previously published data cache analysis methods [2, 4, 6,
8, 10, 11] cannot analyze the interaction between different
sequences of memory accesses. However, it is interesting
to see to what extent they still can be used.

Table 4 also shows that fabmpressa merge penalty was previous methods are only able to handle a single ac-
needed to guarantee a safe estimate of the total worst-Gasg; sequence. In order to handle multiple sequences, the
number of misses. This means that differences in the Eﬁbmem must first be reduced in some way. There are sev-
of accesses or theviss_table (see Section 4.5) was largesral alternatives available and we have already used two
enough to cause a penalty to be added. In our case, i{fi&hods in Section 5, theache nothingand thecache a
difference is mainly due to the list of accesses and thgle sequencmethods, that are both applicable. These
use of the algorithm in Figure 4. This algorithm is quitgyo methods reduce the problem into analyzing at most a

simple and pessimistic. Nevertheless, the accuracy of iggle sequence, which can be handled by all previously
algorithm is quite sufficient for our study, since the addgffesented data cache analysis methods.

penalties are quite small. If the memory system lacks the possibility of not
Another contribution to the penalty is our use of a ratheaching some parts of the memory, we will be forced
simple timing model. In our study, the execution timt cache all data. In this case, the worst-case estimates
of a path is defined as being the number of data cachidd always become worse. We must count accesses to
misses. If we would make the timing model more accnon-cached data as misses and if this data also becomes
rate and add the instruction execution times, the penatiched we must account for the possible additional con-
would probably be reduced or eliminated since the exedlist misses that may occur.
tion time differences between paths to be merged wouldin this study, we have assumed a traditional cache ar-
increase and this would in turn reduce the penalty needekitecture. However, there are several other cache archi-

5.5 Merge penalty

11

tectures that could make the problem easier or maybe References

move the need for any detailed conflict analysis. For ex-
ample, hardware cache partitioning [5] could maybe bE
used to avoid conflicts by caching each data structure into
a separate partition. Another way to avoid conflicts is to
use a cache where the placement of data is software man-
aged [3]. However, these methods introduce the need
manage the partitions or placement of data. Traditional
caches may be easier to use.

Even with traditional data caches it is possible to ap-
ply different techniques to avoid conflict misses. For exf3]
ample, software cache partitioning [9] or other conflict
avoidance techniques [1] could be used. However, these
techniques often require that a complete program is an-
alyzed and produces a fixed placement of data. The dftl
gorithm presented in this paper focuses only on a single
subroutine. Itis not clear how the different techniques can
be combined. 5]

7 Conclusions

(6]
A new method has been presented to estimate the worst-
case number of data cache misses for a single subrou-
tine. In the paper, we present first a basic algorithm ar}e}]
then an improved version that splits the analysis into dif-
ferent cases. An experimental evaluation has been per-
formed using two different benchmark subroutines and
using different data cache associativity. When no corjg]
flict misses occurred (4-way associative cache), the ac-
tual worst-case was found using the fast basic algorithm.
On the other hand, when conflict misses occurred (direct
mapped and 2-way associative cache) the improved algo-
rithm was needed to reach the actual worst-case numbét
of misses.

[10]
Acknowledgments

Professor Per Stendn has contributed with valuable
comments on earlier versions of this paper. This researg
is supported by a grant from Swedish Research Council
on Engineering Science under contract number 221-96-
214,

12

B. Calder, C. Krintz, S. John, and T. Austin. Cache-
conscious data placement. Pmoceeding of the Eigth In-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS
VIIIl), pages 139-149, October 1998.

fﬂ C. Ferdinand and R. Wilhelm. On predicting data cache

behavior for real-time systems. RProceedings of ACM
SIGPLAN Workshop on Languages, Compilers, and Tools
for Embedded Systensages 16—-30, June 1998.

B. Jacob. Hardware/software architectures for real-time
caching. Presented at CASES'99: Workshop on Compiler
and Architecture Support for Embedded Systems, Wash-
ington DC, October 1999.

S.-K. Kim, S. L. Min, and R. Ha. Efficient worst case
timing analysis of data caching. Proceedings of the 2nd
IEEE Real-Time Technology and Applications Symposium
pages 230-240, June 1996.

D. B. Kirk. SMART (strategic memory allocation for

real-time) cache design. Proceedings of the 10th IEEE

Real-Time Systems Symposipages 229-237, December
1989.

Y.-T. S. Li, S. Malik, and A. Wolfe. Cache modeling
for real-time software: Beyond direct mapped instruction
caches. IrProceedings of the 17th IEEE Real-Time Sys-
tems Symposiurpages 254-263, December 1996.

T. Lundgvist and P. Stengim. An integrated path and
timing analysis method based on cycle-level symbolic ex-
ecution. Real-Time System&7(2/3):183—-207, November
1999.

T. Lundgvist and P. Stengtm. A method to improve the
estimated worst-case performance of data cachinBrdn
ceedings of the 6th International Conference on Real-Time
Computing Systems and Applications (RTCSA'#8pes
255-262, December 1999.

F. Mueller. Compiler support for software-based cache
partitioning. INACM SIGPLAN Workshop on Language,
Compiler, and Tool Support for Real-Time Systepages
137-145, June 1995.

R. T. White, F. Mueller, C. A. Healy, D. B. Whalley,
and M. G. Harmon. Timing analysis for data caches and
set-associative caches. Rroceedings of the 3nd IEEE
Real-Time Technology and Applications Sympospages
192-202, June 1997.

ﬁ F. Wolf and R. Ernst. Data flow based cache prediction

using local simulation. IfProceedings of the IEEE High
Level Design Validation and Test Workshqgages 155—
160, November 2000.

